首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments.  相似文献   

2.
孙静  范文义  于颖  王斌  陈晨 《生态学杂志》2019,30(3):793-804
森林净初级生产力(NPP)是反映森林碳源/汇能力的重要参数,其时空变化同时受气象变化(大气温度、降水等)、大气成分变化(CO2浓度、N沉降)和各种森林干扰的影响.然而,目前影响森林NPP变化的关键因子尚不明确.为了探究这一问题,本研究在综合考虑InTEC模型的干扰和非干扰因子的基础上,重新模拟了不同立地指数下的NPP-林龄关系,并嵌入1987—2015年林火数据,模拟1901—2015年塔河森林平均NPP变化特征,设计9种模拟情景定量分析1961—2015年不同影响因子对塔河森林NPP变化的贡献,并探究塔河森林NPP年际以及年代变化的主要影响因子,为森林经营提供指导性策略.结果表明: 1901—1960年,塔河森林NPP的变化趋势较为平稳,1960年以后NPP随干扰因子变化趋势显著.林火和立地指数(SCI)的引入,均在不同时间对NPP的分布特征产生了不同影响.1960年以后,塔河森林NPP大幅变化的主要原因是森林年龄和林火的干扰,其年际平均贡献率为-49%,其次是降水和CO2,分别为-28%和17%,气温和氮沉降的平均贡献率分别为5%和1%.  相似文献   

3.
To address the need for a high quality data set based upon field observations suitable for parameterization, calibration, and validation of terrestrial biosphere models, we have developed a comprehensive global database on net primary productivity (NPP). We have compiled field measurements of biomass and associated environmental data for multiple study sites in major grassland types worldwide. Where sufficient data were available, we compared aboveground and total NPP estimated by six computational methods (algorithms) for 31 grassland sites. As has been found previously, NPP estimates were 2–5 times higher using methods which accounted for the dynamics of dead matter, compared with what is still the most commonly applied estimate of NPP (maximum peak live biomass). It is suggested that assumptions such as the use of peak biomass as an indicator of NPP in grasslands may apply only within certain subbiomes, e.g. temperate steppe grasslands. Additional data on belowground dynamics, or other reliable estimates of belowground productivity, are required if grasslands are to be fully appreciated for their role in the global carbon cycle.  相似文献   

4.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   

5.
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process‐based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2 fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post‐fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.  相似文献   

6.
A number of remote sensing studies have evaluated the temporal trends of the normalized difference vegetation index (NDVI or vegetation greenness) in the North American boreal forest during the last two decades, often getting quite different results. To examine the effect that the use of different datasets might be having on the estimated trends, we compared the temporal trends of recently burned and unburned sites of boreal forest in central Canada calculated from two datasets: the Global Inventory, Monitoring, and Modeling Studies (GIMMS), which is the most commonly used 8 km dataset, and a new 1 km dataset developed by the Canadian Centre for Remote Sensing (CCRS). We compared the NDVI trends of both datasets along a fire severity gradient in order to evaluate the variance in regeneration rates. Temporal trends were calculated using the seasonal Mann–Kendall trend test, a rank‐based, nonparametric test, which is robust against seasonality, nonnormality, heteroscedasticity, missing values, and serial dependence. The results showed contrasting NDVI trends between the CCRS and the GIMMS datasets. The CCRS dataset showed NDVI increases in all recently burned sites and in 50% of the unburned sites. Surprisingly, the GIMMS dataset did not capture the NDVI recovery in most burned sites and even showed NDVI declines in some burned sites one decade after fire. Between 50% and 75% of GIMMS pixels showed NDVI decreases in the unburned forest compared with <1% of CCRS pixels. Being the most broadly used dataset for monitoring ecosystem and carbon balance changes, the bias towards negative trends in the GIMMS dataset in the North American boreal forest has broad implications for the evaluation of vegetation and carbon dynamics in this region and globally.  相似文献   

7.
Zeng H Q  Liu Q J  Feng Z W  Wang X K  Ma Z Q 《农业工程》2008,28(11):5314-5321
In this study, the BIOME-BGC model, a biogeochemical model, was used and validated to estimate GPP (Gross Primary Productivity) and NPP (Net Primary Productivity) of Pinus elliottii forest in red soil hilly region and their responses to inter-annual climate variability during the period of 1993–2004 and climate change scenarios in the future. Results showed that the average total GPP and NPP were 1941 g C m?2a?1 and 695 g C m?2a?1, and GPP and NPP showed an increasing trend during the study period. The precipitation was the key factor controlling the GPP and NPP variation. Scenario analysis showed that doubled CO2 concentration would not benefit for GPP and NPP with less than 1.5% decrease. When CO2 concentration fixed, GPP responded positively to precipitation change only, and temperature increase by 1.5°C with precipitation increase, while NPP responded positively to precipitation change only. When CO2 concentration was doubled and climate was changed, GPP and NPP responded positively to precipitation change, and GPP also responded positively to temperature increase by 1.5°C with precipitation change.  相似文献   

8.
陕北黄土高原植被净初级生产力的估算   总被引:11,自引:0,他引:11  
基于MODIS和地面气象数据,利用改进的CASA模型,模拟分析了2005年陕北黄土高原地区的植被净初级生产力(NPP)及其时空分布.结果表明:1)根据生态生理过程模型针对不同土地覆被类型选择不同的月平均最大光能利用率,比传统CASA模型中使用固定的全球月平均最大光能利用率进行NPP估算,更符合陕北黄土高原地区的实际情况;在估算植被参数时引入植被覆盖分类,以及利用陕北黄土高原2005年时序NDVI进行土地覆被分类的同时,结合1:100万中国植被图和实地调查情况对分类结果进行修正,可提高分类的精度,从而提高模型估算的精度.2)通过不同模型之间和与陕北部分地区实际调查数据进行比较,显示改进后的CASA模型对区域陆地植被NPP的模拟效果较好,可应用于陕北黄土高原乃至周边地区NPP的计算中.3)2005年陕北黄土高原植被净第一性生产量估计值为4.76×10~(13) g C,约占全国总NPP的1.5%,植被平均NPP为447.3 g C·m~(-2)·a~(-1),高于1992-2000年全国陆地NPP平均值323.8 g C·m~(-2)·a~(-1).4)在NPP的空间分布上,总体趋势是由东南向西北递减,其中最高值出现在东南部的黄龙山次生林区(1087g C·m~(-2)·a~(-1));西北部的荒漠植被覆盖度极低,平均NPP仅为205.0 g C·m~(-2)·a~(-1).5)陕北黄土高原NPP的季节变化明显,其中4月中旬至10月中旬6个月生长季时间里的NPP可占到全年的91.5%,而7月中旬至8月中旬间该区的净初级生产力达到年内的极大值,可占全年的37.8%.
Abstract:
Based on the data from MODIS (Moderate-resolution Imaging Speetroradiometer) and meteorological observatories, and by using improved CASA (Carnegie-Ames-Stanford Approach) model, the vegetation net primary productivity (NPP) and its spatiotemporal distribution on the North Shaanxi Loess Plateau in 2005 were simulated and analyzed. Comparing with the traditional CASA model which only uses a universal mean annual maximum light use efficiency (LUE), the estimated regional NPP by the improved CASA model was more precise, because this improved model used the LUE parameters of different vegetation covers. The detailed land cover classifica-tion also contributed to the increase of the precision via introducing the time-series Normalized Different Vegetation Index (NDVI) and ground survey data to modify and adjust the original clas-sification system based on vegetation map (1: 1000000). The testing of the simulation results from different models with the ground survey data in North Shaanxi showed that the estimation by the modified CASA model was much closer to the real survey data, implying the potential practi-cal significance of this model in estimating the vegetation NPP in North Shaanxi Loess Plateau and its adjacent areas. In 2005, the NPP in North Shaanxi was estimated as 4. 76×1013 g C, ac-counting for about 1.5% of China' s terrestrial total NPP, and the mean NPP was 447.3 g C·m~(-2)·a~(-1), being much higher than that of China' s terrestrial vegetation (323.8 g C·m~(-2)·a~(-1)) in 1982-2000. The spatial distribution pattern of the vegetation NPP showed an apparently declining trend from the southeast to the northwest, with the highest value of 1087 g C·m~(-2)a~(-1) occurred in the broadleaved-and conifer-mixed forests of Huanglong Mountain in southeast part of the region. The mean NPP of desert vegetation in the whole region was the lowest, only about 205.0 g C·m~(-2) ·a~(-1). An obvious seasonal variation of the NPP was observed. The NPP in growth season (from April to October) took about 91.5% of the total in the year, and the peak occurred in mid-July to mid-August, amounting to 37.8% of the total.  相似文献   

9.
1. This paper reviews and compares the effects of forest fire and timber harvest on mammalian abundance and diversity, throughout successional time in the boreal forest of North America. 2. Temporal trends in mammal abundance and diversity are generally similar for both harvested and burned stands, with some differences occurring in the initiation stage (0–10 years post disturbance). 3. Small mammals and ungulates are most abundant immediately post disturbance, and decrease as stands age. Lynxes and hares utilize mid-successional stands, but are rare in young and old stands. Bats, arboreal sciurids and mustelids increase in abundance with stand age, and are most abundant in old growth. 4. Substantial gaps in the data exist for carnivores; the response of these species to fire and harvest requires research, as predator–prey interactions can affect mammal community structure in both early and late successional stages. 5. The lack of explicit treatment of in-stand forest structure post disturbance, in the reviewed literature made comparisons difficult. Where forest structure was considered, the presence of downed woody material, live residual trees and standing dead wood were shown to facilitate convergence of mammal communities to a pre-disturbance state for both disturbance types. 6. Mammalian assemblages differed considerably between successional stages, emphasizing the importance of maintaining stands of each successional stage on the landscape when implementing forest management strategies.  相似文献   

10.
森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901-2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966-2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m-2·a-1, 到了1950年, NPP平均值增加到338.5 g C·m-2·a-1, 2008年NPP平均值进一步增加到378.4 g C·m-2·a-1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200-300 g C·m-2·a-1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100-1000 hm2)对NPP的影响不是很大, 而特大火灾(>1000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。  相似文献   

11.
利用2001-2010年EOS/MODIS17A3卫星遥感资料,对广西植被净初级生产力(NPP)时空特征及其影响因素进行分析.结果表明:(1)NPP 表现出明显的年际变化,2005年植被年均 NPP 最小为625 gC??m-2??a-1,2003年最大,为714 gC??m-2??a-1,十年间广西植被年NPP平均值为662 gC??m-2??a-1;(2)不同植被类型NPP有较大差异,森林、灌木、农作物的NPP 平均值分别为834、614、517 gC??m-2??a-1;(3)十年间广西区年均NPP为显著下降趋势,且年均气温和降水对NPP时间变化作用显著,而日照时数对 NPP 时间变化的作用不显著;(4)广西区NPP空间格局形成主要影响因素为坡度,其次为经度,再次为地貌特征、纬度和降水;(5)非喀斯特区域北热带季雨林、南亚热带季雨林化/季雨化常绿阔叶林年均 NPP 大于喀斯特地区,相反,喀斯特地区中亚热带常绿阔叶林,农作物年均NPP大于非喀斯特地区.整体而言,广西非喀斯特地区植被NPP为683 gC??m-2??a-1,喀斯特地区植被NPP为620 gC??m-2??a-1.  相似文献   

12.
 森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901–2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966–2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m–2·a–1, 到了1950年, NPP平均值增加到338.5 g C·m–2·a–1, 2008年NPP平均值进一步增加到378.4 g C·m–2·a–1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200–300 g C·m–2·a–1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100–1000 hm2)对NPP的影响不是很大, 而特大火灾(>1 000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100 000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。  相似文献   

13.
We calculated carbon budgets for a chronosequence of harvested jack pine (Pinus banksiana Lamb.) stands (0‐, 5‐, 10‐, and~29‐year‐old) and a~79‐year‐old stand that originated after wildfire. We measured total ecosystem C content (TEC), above‐, and belowground net primary productivity (NPP) for each stand. All values are reported in order for the 0‐, 5‐, 10‐, 29‐, and 79‐year‐old stands, respectively, for May 1999 through April 2000. Total annual NPP (NPPT) for the stands (Mg C ha?1 yr?1±1 SD) was 0.9±0.3, 1.3±0.1, 2.7±0.6, 3.5±0.3, and 1.7±0.4. We correlated periodic soil surface CO2 fluxes (RS) with soil temperature to model annual RS for the stands (Mg C ha?1 yr?1±1 SD) as 4.4±0.1, 2.4±0.0, 3.3±0.1, 5.7±0.3, and 3.2±0.2. We estimated net ecosystem productivity (NEP) as NPPT minus RH (where RH was calculated using a Monte Carlo approach as coarse woody debris respiration plus 30–70% of total annual RS). Excluding C losses during wood processing, NEP (Mg C ha?1 yr?1±1 SD) for the stands was estimated to be ?1.9±0.7, ?0.4±0.6, 0.4±0.9, 0.4±1.0, and ?0.2±0.7 (negative values indicate net sources to the atmosphere.) We also calculated NEP values from the changes in TEC among stands. Only the 0‐year‐old stand showed significantly different NEP between the two methods, suggesting a possible mismatch for the chronosequence. The spatial and methodological uncertainties allow us to say little for certain except that the stand becomes a source of C to the atmosphere following logging.  相似文献   

14.
Net primary productivity mapped for Canada at 1-km resolution   总被引:7,自引:0,他引:7  
Aim To map net primary productivity (NPP) over the Canadian landmass at 1‐km resolution. Location Canada. Methods A simulation model, the Boreal Ecosystem Productivity Simulator (BEPS), has been developed. The model uses a sunlit and shaded leaf separation strategy and a daily integration scheme in order to implement an instantaneous leaf‐level photosynthesis model over large areas. Two key driving variables, leaf area index (every 10 days) and land cover type (annual), are derived from satellite measurements of the Advanced Very High Resolution Radiometer (AVHRR). Other spatially explicit input data are also prepared, including daily meteorological data (radiation, precipitation, temperature, and humidity), available soil water holding capacity (AWC) and forest biomass. The model outputs are compared with ground plot data to ensure that no significant systematic biases are created. Results The simulation results show that Canada’s annual net primary production was 1.22 Gt C year?1 in 1994, 78% attributed to forests, mainly the boreal forest, without considering the contribution of the understorey. The NPP averaged over the entire landmass was ~140 g C m?2 year?1 in 1994. Geographically, NPP varied greatly among ecozones and provinces/territories. The seasonality of NPP is characterized by strong summer photosynthesis capacities and a short growing season in northern ecosystems. Conclusions This study is the first attempt to simulate Canada‐wide NPP with a process‐based model at 1‐km resolution and using a daily step. The statistics of NPP are therefore expected to be more accurate than previous analyses at coarser spatial or temporal resolutions. The use of remote sensing data makes such simulations possible. BEPS is capable of integrating the effects of climate, vegetation, and soil on plant growth at a regional scale. BEPS and its parameterization scheme and products can be a basis for future studies of the carbon cycle in mid‐high latitude ecosystems.  相似文献   

15.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

16.
东北森林净第一性生产力与碳收支对气候变化的响应   总被引:9,自引:0,他引:9  
以东北地区(38.43'N~53.34'N,115.37'E~135.5'E)为研究对象,利用当前气候状况和不同气候情景下的气象数据驱动基于个体生长过程的中国森林生态系统碳收支模型FORCCHN,模拟了气候变化对东北森林生态系统净第一性生产力(NPP)和碳收支(NEP)的影响.结果表明:1981~2002年期间,东北森林NPP总量位于0.27~0.40 pgc·a-1之间,平均值为0.34 pgc·a-1;土壤呼吸总量在0.11~0.27 PgC·a-1,平均为0.19 PgC·a-1;NEP总量位于0.11~0.18 PgC·a-1之间,且近20多年来该区森林起着CO2汇的作用,平均每年吸收0.15 Pg C的CO2;该区森林NPP和NEP对温度升高比对降雨变化的反应更为敏感;综合降雨增加(20%)和气温增加(3℃)的情况,该区各点森林的NPP和NEP增加的幅度最大;温度不变、降水增加(不变)情景下最小.  相似文献   

17.
18.
A model of boreal forest dynamics was adapted to examine the factors controlling carbon and nitrogen cycling in the boreal forests of interior Alaska. Empirical relationships were used to simulate decomposition and nitrogen availability as a function of either substrate quality, the soil thermal regime, or their interactive effects. Test comparisons included black spruce forests growing on permafrost soils and black spruce, birch, and white spruce forests growing on permafrost-free soils. For each forest, simulated above-ground tree biomass, basal area, density, litterfall, moss biomass, and forest floor mass, turnover, thickness, and nitrogen concentration were compared to observed data. No one decay equation simulated forests entirely consistent with observed data, but over the range of upland forest types in interior Alaska, the equation that combined the effects of litter quality and the soil thermal regime simulated forests that were most consistent with observed data. For black spruce growing on permafrost soils, long-term simulated forest dynamics in the absence of fire resulted in unproductive forests with a thick forest floor and low nitrogen mineralization. Fires were an important means to interrupt this sequence and to restart forest succession.  相似文献   

19.
Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.  相似文献   

20.
Although boreal forests are currently sinks for atmospheric C, there is some concern that they may not remain so under hypothesized warming of the boreal climate. The ecosystem model ecosys was used to evaluate possible changes in ecosystem C exchange and accumulation under changes in atmospheric CO2 concentration (Ca) proposed in emissions scenario IS92a, and accompanying changes in air temperature and precipitation proposed by general circulation models running under IS92a. Ecosys was first tested under current climate by comparing modelled rates of C exchange and accumulation with those measured in a mixed aspen–hazelnut stand in central Saskatchewan. The model was then run with daily increments of Ca, temperature and precipitation, and differences in C exchange and accumulation between current and changing climates were evaluated. Model results indicated that over a 120‐y period, a mixed aspen–hazelnut stand currently accumulates about 14 kg C m?2. Under the hypothesized changes in climate this stand would accumulate an additional 8.5 kg C m?2, largely through higher rates of CO2 fixation and longer growing seasons under higher Ca and temperature. This additional accumulation would be entirely as aspen wood, while soil organic matter would change little. This accumulation would therefore be vulnerable to losses from fire and insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号