首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
二酮酸类化合物(DKAs)是目前最有前景的HIV-1整合酶(integrase, IN)抑制剂.为了解DKAs引起的多种耐药株共有的耐药性机理,选择3种S-1360引起的IN耐药突变体,用分子对接和分子动力学模拟,研究了野生型和突变型IN与S-1360的结合模式,基于该结合模式探讨了3种耐药突变体所共有的耐药性机理.结果表明:在突变体中,S-1360结合到耐药突变IN核心区中的位置靠近功能loop 3区却远离与 DNA结合的关键残基,结合位置不同导致S-1360的抑制作用部分丧失;残基138到166区域的柔性对IN发挥生物学功能很重要,S-1360能与DNA结合的关键残基N155及K159形成氢键,这2个氢键作用降低了该区域的柔性,突变体中无类似氢键,因而该区域柔性增高;在突变体中,S-1360的苯环远离病毒DNA结合区,不能阻止病毒DNA末端暴露给宿主DNA;T66I突变导致残基Ⅰ的长侧链占据IN的活性口袋,阻止抑制剂以与野生型中相同的方式结合到活性中心,这均是产生抗药性的重要原因.这些模拟结果与实验结果吻合,可为抗IN的抑制剂设计和改造提供帮助.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the virus and is an attractive target for the development of new drugs useful in acquired immunodeficiency syndrome multidrug therapy. Starting from the crystal structure of the 5CITEP inhibitor bound to the active site in the catalytic domain of the HIV-1 IN, two different molecular dynamics simulations in water have been carried out. In the first simulation the wild-type IN was used, whereas in the second one the double mutation T66I/M154I, described to lead to drug resistance, was introduced in the protein. Compelling differences have been observed in these two structures during analyses of the molecular dynamics trajectories, particularly in the inhibitor binding modes and in the conformational flexibility of the loop (residues 138-149) located near the three catalytic residues in the active site (Asp(64), Asp(116), Glu(152)). Because the conformational flexibility of this region is important for efficient biological activity and its behavior is quite different in the two models, we suggest a hypothetical mechanism for the inhibition and drug resistance of HIV-1 IN. These results can be useful for the rational design of more potent and selective integrase inhibitors and may allow for the design of inhibitors that will be more robust against known resistance mutations.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a critical enzyme involved in infection. It catalyzes two reactions to integrate the viral cDNA into the host genome, 3′ processing and strand transfer, but the dynamic behavior of the active site during catalysis of these two processes remains poorly characterized. NMR spectroscopy can reveal important structural details about enzyme mechanisms, but to date the IN catalytic core domain has proven resistant to such an analysis. Here, we present the first NMR studies of a soluble variant of the catalytic core domain. The NMR chemical shifts are found to corroborate structures observed in crystals, and confirm prior studies suggesting that the α4 helix extends toward the active site. We also observe a dramatic improvement in NMR spectra with increasing MgCl2 concentration. This improvement suggests a structural transition not only near the active site residues but also throughout the entire molecule as IN binds Mg2+. In particular, the stability of the core domain is linked to the conformation of its C-terminal helix, which has implications for relative domain orientation in the full-length enzyme. 15N relaxation experiments further show that, although conformationally flexible, the catalytic loop of IN is not fully disordered in the absence of DNA. Indeed, automated chemical shift-based modeling of the active site loop reveals several stable clusters that show striking similarity to a recent crystal structure of prototype foamy virus IN bound to DNA.  相似文献   

4.
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5' phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.  相似文献   

5.
6.
HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.

Structured summary

MINT-7713125: IN (uniprotkb:P04585) and IN (uniprotkb:P04585) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

7.
To probe the structural basis for protein histidine kinase (PHK) catalytic activity and the prospects for PHK-specific inhibitor design, we report the crystal structures for the nucleotide binding domain of Thermotoga maritima CheA with ADP and three ATP analogs (ADPNP, ADPCP and TNP-ATP) bound with either Mg(2+) or Mn(2+). The conformation of ADPNP bound to CheA and related ATPases differs from that reported in the ADPNP complex of PHK EnvZ. Interactions of the active site with the nucleotide gamma-phosphate and its associated Mg(2+) ion are linked to conformational changes in an ATP-lid that could mediate recognition of the substrate domain. The inhibitor TNP-ATP binds CheA with its phosphates in a nonproductive conformation and its adenine and trinitrophenyl groups in two adjacent binding pockets. The trinitrophenyl interaction may be exploited for designing CheA-targeted drugs that would not interfere with host ATPases.  相似文献   

8.
Abstract

In order to investigate the relationship between the bioactive conformation of a peptide and its set of thermodynamically accessible structures in solution, the conformational profile of the tetrapeptide Ac-Pro-Ala-Pro-Tyr-OH was characterized by computational methods. Search of the conformational space was performed within the molecular mechanics framework using the AMBER4.0 force field with an effective dielectric constant of 80. Unique structures of the peptide were compared with its bioactive conformation for the protein Streptomyces griseus Protease A, as taken from the crystal structure of the enzyme-peptide complex. The results show that the bound conformation is close to one of the unique conformations characterized in the conformational search of the isolated peptide. Moreover, the lowest energy minimum characterized in the conformational search exhibits large deviations when compared to the bound conformation of the crystal structure.  相似文献   

9.
Enzymes of glycolysis in Trypanosoma brucei have been identified as potential drug targets for African sleeping sickness because glycolysis is the only source of ATP for the bloodstream form of this parasite. Several inhibitors were previously reported to bind preferentially to trypanosomal phosphoglucose isomerase (PGI, the second enzyme in glycolysis) than to mammalian PGIs, which suggests that PGI might make a good target for species-specific drug design. Herein, we report recombinant expression, purification, crystallization and X-ray crystal structure determination of T. brucei PGI. One structure solved at 1.6 A resolution contains a substrate, D-glucose-6-phosphate, in an extended conformation in the active site. A second structure solved at 1.9 A resolution contains a citrate molecule in the active site. The structures are compared with the crystal structures of PGI from humans and from Leishmania mexicana. The availability of recombinant tPGI and its first high-resolution crystal structures are initial steps in considering this enzyme as a potential drug target.  相似文献   

10.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

11.
Y-family DNA polymerases catalyze translesion DNA synthesis over damaged DNA. Each Y-family polymerase has a polymerase core consisting of a palm, finger and thumb domain in addition to a fourth domain known as a little finger domain. It is unclear how each domain moves during nucleotide incorporation and what type of conformational changes corresponds to the rate-limiting step previously reported in kinetic studies. Here, we present three crystal structures of the prototype Y-family polymerase: apo-Dpo4 at 1.9 Å resolution, Dpo4-DNA binary complex and Dpo4-DNA-dTMP ternary complex at 2.2 Å resolution. Dpo4 undergoes dramatic conformational changes from the apo to the binary structures with a 131° rotation of the little finger domain relative to the polymerase core upon DNA binding. This DNA-induced conformational change is verified in solution by our tryptophan fluorescence studies. In contrast, the polymerase core retains the same conformation in all three conformationally distinct states. Particularly, the finger domain which is responsible for checking base pairing between the template base and an incoming nucleotide retains a rigid conformation. The inflexibility of the polymerase core likely contributes to the low fidelity of Dpo4, in addition to its loose and solvent-accessible active site. Interestingly, while the binary and ternary complexes of Dpo4 retain an identical global conformation, the aromatic side chains of two conserved tyrosines at the nucleotide-binding site change orientations between the binary and ternary structures. Such local conformational changes may correspond to the rate-limiting step in the mechanism of nucleotide incorporation. Together, the global and local conformational transitions observed in our study provide a structural basis for the distinct kinetic steps of a catalytic cycle of DNA polymerization performed by a Y-family polymerase.  相似文献   

12.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health, particularly through hospital acquired infection. The spread of MRSA means that novel targets are required to develop potential inhibitors to combat infections caused by such drug-resistant bacteria. Thymidylate kinase (TMK) is attractive as an antibacterial target as it is essential for providing components for DNA synthesis. Here, we report crystal structures of unliganded and thymidylate-bound forms of S. aureus thymidylate kinase (SaTMK). His-tagged and untagged SaTMK crystallize with differing lattice packing and show variations in conformational states for unliganded and thymidylate (TMP) bound forms. In addition to open and closed forms of SaTMK, an intermediate conformation in TMP binding is observed, in which the site is partially closed. Analysis of these structures indicates a sequence of events upon TMP binding, with helix alpha3 shifting position initially, followed by movement of alpha2 to close the substrate site. In addition, we observe significant conformational differences in the TMP-binding site in SaTMK as compared to available TMK structures from other bacterial species, Escherichia coli and Mycobacterium tuberculosis as well as human TMK. In SaTMK, Arg 48 is situated at the base of the TMP-binding site, close to the thymine ring, whereas a cis-proline occupies the equivalent position in other TMKs. The observed TMK structural differences mean that design of compounds highly specific for the S. aureus enzyme looks possible; such inhibitors could minimize the transfer of drug resistance between different bacterial species.  相似文献   

13.
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate‐free) and camphor‐soaked forms have open conformations. Furthermore, two other potential camphor‐binding sites were also identified from electron densities in the camphor‐soaked structure, one being located in the access channel and the other in a cavity on the surface near the F‐helix side of the F‐G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor‐bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor‐bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.  相似文献   

14.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

15.
The Val99-Gly 104 variable region in egg white lysozyme is part of the active site cleft and of the epitope recognized by some monoclonal antibodies. In general, this loop is found in a conformation inflected towards the active site (proximal conformational) such as in free hen lysozyme (HEL). But in a lysozyme such as Japanese quail's (JEL), the loop turns away from the active site cleft (distal conformation). In order to differentiate sequence effects from crystal packing, we generated and refined loop conformations for the 99-104 variable region in lysozyme, then estimated their relative conformational free energies. Some of the results indicate that (i) the flexibility of the 99-104 segment is much greater for HEL than for JEL sequences when unconstrained by the crystal lattice, (ii) for JEL, only distal structures are favored, while for HEL the states span the zone between proximal and distal regions, and (iii) epitopes elucidated from crystal structures may not always be conserved in solution. For the JEL loop, model building shows that an energy-costly distal to proximal transition appears necessary. Finally, analysis of available structural data indicates that changes of humidity, temperature and pressure on loop conformation are negligible.  相似文献   

16.
BCL-W is a member of the BCL-2 family of anti-apoptotic proteins. A key event in the regulation of apoptosis is the heterodimerization between anti-apoptotic and pro-apoptotic family members, which involves a conserved surface-exposed groove on the anti-apoptotic proteins. Crystal structures of the ligand binding-competent conformation exist for all anti-apoptotic family members, with the exception of BCL-W, due to the flexibility of the BCL-W groove region. Existing structures had suggested major deviations of the BCL-W groove region from the otherwise structurally highly related remaining anti-apoptotic family members. To capture its ligand binding-competent conformation by counteracting the conformational flexibility of the BCL-W groove, we had selected high-affinity groove-binding designed ankyrin repeat proteins (DARPins) using ribosome display. We now determined two high-resolution crystal structures of human BCL-W in complex with different DARPins at resolutions 1.5 and 1.85 Å, in which the structure of BCL-W is virtually identical, and BCL-W adopts a conformation extremely similar to the ligand-free conformation of its closest relative BCL-XL in both structures. However, distinct differences to all previous BCL-W structures are evident, notably in the ligand-binding region. We provide the first structural explanation for the conformational flexibility of the BCL-W groove region in comparison to other BCL-2 family members. Due to the importance of the anti-apoptotic BCL-2 family as drug targets, the presented crystal structure of ligand binding-competent BCL-W may serve as a valuable basis for structure-based drug design in the future and provides a missing piece for the structural characterization of this protein family.  相似文献   

17.
Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.  相似文献   

18.
Restricting linear peptides to their bioactive conformation is an attractive way of improving their stability and activity. We used a cyclic peptide library with conformational diversity for selecting an active and stable peptide that mimics the structure and activity of the HIV-1 integrase (IN) binding loop from its cellular cofactor LEDGF/p75 (residues 361-370). All peptides in the library had the same primary sequence, and differed only in their conformation. Library screening revealed that the ring size and linker structure had a huge effect on the conformation, binding and activity of the peptides. One of the cyclic peptides, c(MZ 4-1), was a potent and stable inhibitor of IN activity in vitro and in cells even after 8 days. The NMR structure of c(MZ 4-1) showed that it obtains a bioactive conformation that is similar to the parent site in LEDGF/p75.  相似文献   

19.
The insertion of viral DNA into the host chromosome is an essential step in the replication of HIV-1, and is carried out by an enzyme, HIV-1 integrase (IN). Since the latter has no human cellular counterpart, it is an attractive target for antiviral drug design. Several IN inhibitors having activities in the micromolar range have been reported to date. However, no clinically useful inhibitors have yet been developed. Recently reported diketo acids represent a novel and selective class of IN inhibitors. These are the only class which appear to selectively target integrase and two of the inhibitors, L-708,906 and L-731,988, are the most potent inhibitors of preintegration complexes described to date.The X-ray crystal structure of the IN catalytic domain complexed with a diketo acid derivative inhibitor, 5CITEP, has recently been determined. Although the structure is of great value as a platform for drug design, experimental data suggest that crystal packing effects influence the observed inhibitor position. This has been confirmed by computational docking studies using the latest version (3.0) of the AutoDock program, which has been shown to give results largely consistent with available experimental data. Using AutoDock 3.0 and SYBYL6.6 we have modeled the complexes of IN with the diketo acid inhibitors so as to identify the enzyme binding site. In the quest for novel, potent and selective small molecule inhibitors, we present here a new approach to peptide inhibitor design using a, b- unsaturated (dehydro) residues, which confer a unique conformation on a peptide sequence. Based on the above models, we selected a tetrapeptide sequence containing a dehydro-Phe residue, which was found to have an open conformation as ascertained from its X-ray crystal structure. Docking results on this peptide led us to propose a modification at the C-terminal end. The modified peptide was found to dock in a similar position as the diketo acid inhibitors and was predicted to have a comparable potency.  相似文献   

20.
Enzymes from psychrophilic organisms differ from their mesophilic counterparts in having a lower thermostability and a higher specific activity at low and moderate temperatures. It is in general accepted that psychrophilic enzymes are more flexible to allow easy accommodation and transformation of the substrates at low energy costs. Here, we report the structures of two crystal forms of the alkaline protease from an Antarctic Pseudomonas species (PAP), solved to 2.1- and 1.96-A resolution, respectively. Comparative studies of PAP structures with mesophilic counterparts show that the overall structures are similar but that the conformation of the substrate-free active site in PAP resembles that of the substrate-bound region of the mesophilic homolog, with both an active-site tyrosine and a substrate-binding loop displaying a conformation as in the substrate-bound form of the mesophilic proteases. Further, a region in the catalytic domain of PAP undergoes a conformational change with a loop movement as large as 13 A, induced by the binding of an extra calcium ion. Finally, the active site is more accessible due to deletions occurring in surrounding loop regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号