首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleoside analogues have been used in antiviral therapy and suicide cancer gene therapy. Therefore, it is of importance to compare their potential cytotoxic and genotoxic action. Using metabolically competent CHO cells expressing the thymidine kinase gene of herpes simplex virus type 1 (CHO-HSVtk cells) as a model system, the induction of DNA breaks was compared with the induction of structural chromosomal aberrations and apoptosis/necrosis after exposure to the anti-herpes nucleoside analogues aciclovir (ACV), ganciclovir (GCV) and penciclovir (PCV). After continuous treatment of CHO-HSVtk cells with the drugs, LD(10) in a colony-forming assay was 50, 0.5 and 1 microM for ACV, GCV and PCV, respectively, with GCV to be the most potent agent as determined at a given dose level. There was a remarkable difference in the activity of the agents to kill HSVtk expressing and non-expressing cells: the difference in cellular sensitivity of HSVtk(+) versus HSVtk(-) cells at LD(10) level was 7-fold for ACV, 60-fold for GCV and 400-fold for PCV. The drugs were shown to be strong inducers of apoptosis that was analysed as to concentration- and time-dependence; they induced to only very low extent necrosis. The agents were also highly potent in the induction of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) (as measured by single cell gel electrophoresis (SCGE)) and chromosomal aberrations. Although PCV induced DNA DSBs with a kinetics and frequency similar to that of GCV, it caused mostly condensation defects instead of "typical" structural chromosomal aberrations. For the drugs used, the frequency of apoptotic cells and the induction of abnormal mitoses appear to be related indicating genotoxic effects induced by the agents to be involved in cell killing due to apoptosis.  相似文献   

2.
Khynriam D  Prasad SB 《Cytobios》1999,100(395):171-180
Allium cepa root growth was retarded by cisplatin treatment in a dose-dependent manner. A decrease in the mitotic index (MI) and an increase in the number of interphase cells was seen in cisplatin treated root tips. An increase in the frequency of abnormal mitoses and chromosomal aberrations was also observed in cisplatin treated groups which indicates its genotoxic effect on plant cells. The endogenous glutathione (GSH) level in the root tips decreased significantly after cisplatin treatment which may favour its increased interaction with cellular DNA thereby developing enhanced chromosomal aberrations and affecting cell divisions and root growth. It is suggested that the decrease in endogenous GSH may be related to the development of cisplatin-mediated genotoxic effects in plants.  相似文献   

3.
B K?berle  G Speit 《Mutation research》1990,243(3):225-231
Using sister-chromatid exchanges (SCEs) as an indicator for DNA damage, we investigated the role of glutathione (GSH) as a determinant of cellular sensitivity to the DNA-damaging effects of the cytostatic drugs adriamycin (AM) and cyclophosphamide (CP). Exposure of V79 cells to buthionine sulfoximine (BSO) resulted in a complete depletion of cellular GSH content without toxicity and without increasing the SCE frequency. Subsequent 3-h treatment of GSH-depleted cells with AM or S9-mix-activated CP caused a potentiation of SCE induction. In Chinese hamster ovary (CHO) cells, which showed a higher GSH level compared to V79 cells, BSO treatment led to a depletion of GSH to about 5% of the control and increased SCE induction by AM and CP. Compared to V79 cells, the effect of AM on SCE frequencies was less distinct in CHO cells, while CP exerted a similar effect in both cell lines. Pretreatment of V79 cells with GSH increased the cellular GSH content, but had no effect on the induction of SCEs by AM, and pretreatment with cysteine influenced neither GSH levels nor SCE induction by AM. The study shows that SCEs are a suitable indicator for testing the modulation of of drug genotoxicity by GSH. The importance of different GSH contents of cell lines for their response to mutagens is discussed.  相似文献   

4.
Lackinger D  Kaina B 《Mutation research》2000,457(1-2):113-123
The important regulatory proteins, c-Fos and p53 are induced by exposure of cells to a variety of DNA damaging agents. To investigate their role in cellular defense against genotoxic compounds, we comparatively analysed chromosomal aberrations and apoptosis induced by ultraviolet (UV-C) light and the potent alkylating agent methyl methanesulfonate (MMS) in primary diploid mouse fibroblasts knockout for either c-Fos or p53, or double knockout for both genes. We show that c-Fos and p53 deficient fibroblasts are more sensitive than the corresponding wild-type cells as to the induction of chromosomal aberrations and apoptosis. Double knockout fibroblasts lacking both c-Fos and p53 are viable and were even more sensitive, showing additivity of the chromosomal breakage effects observed in the single knockouts. Regarding the endpoint apoptosis, double knockout fibroblasts displayed a sensitivity similar to c-Fos and p53 deficient cells. The data indicate that (a) both c-Fos and p53 are involved in cellular protection against the clastogenic effect of genotoxic agents, (b) p53 is not required for induction of apoptosis by UV light and MMS, but rather prevents fibroblasts from undergoing apoptotic cell death upon DNA damage, and (c) c-Fos and p53 seem to act independently in determining genotoxic resistance, which is hypothesized to be achieved by impaired DNA repair or differential cell cycle check point control.  相似文献   

5.
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.  相似文献   

6.
Antimycin A (AMA) inhibits succinate oxidase, NADH oxidase, and mitochondrial electron transport chain between cytochrome b and c. We recently demonstrated that AMA inhibited the growth of Calu-6 lung cancer cells through apoptosis. Here, we investigated the effects of AMA and/or MAPK inhibitors on Calu-6 lung cancer cells in relation to cell growth, cell death, reactive oxygen species (ROS), and GSH levels. Treatment with AMA inhibited the growth of Calu-6 cells at 72 h. AMA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). While ROS were decreased in AMA-treated Calu-6 cells, O 2 ?? among ROS was increased. AMA also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor intensified cell death, MMP (ΔΨm) loss, and GSH depletion in AMA-treated Calu-6 cells. JNK inhibitor also increased cell death, MMP (ΔΨm) loss, and ROS levels in these cells. Treatment with p38 inhibitor magnified cell growth inhibition by AMA and increased cell death, MMP (ΔΨm) loss, ROS level, and GSH depletion in AMA-treated cells. Conclusively, all the MAPK inhibitors slightly intensified cell death in AMA-treated Calu-6 cells. The changes of ROS and GSH by AMA and/or MAPK inhibitors were in part involved in cell growth and death in Calu-6 cells.  相似文献   

7.
This study aimed to study the effect of bradykinin on reactive oxygen species (ROS) generation, mitochondrial injury, and cell death induced by ATP depletion in cell culture. Renal tubular cells were subjected to ATP depletion. Cell death was evaluated with LDH release, sub-G0/G1 fraction, Hoechst staining, and annexin V binding assay. ROS generation, mitochondrial membrane potential (DeltaPsi(m)), and intramitochondrial calcium were evaluated with flow cytometry. Translocation of cytochrome c and activation of apoptotic protein were analyzed with cell fractionating and Western blotting. Intracellular calcium was measured with a spectrofluorometer. Bradykinin enhanced cellular LDH release, apoptosis, generation of superoxide, and hydrogen peroxide induced by ATP depletion. Bradykinin also enhanced the loss of DeltaPsi(m), translocation of cytochrome c into cytosol, and activation of apoptotic protein. The intracellular/mitochondrial calcium was higher in bradykinin-treated cells. All these effects were reversed by coadministration with bradykinin B2 receptor (B2R) antagonist. Besides, blocking the phospholipase C (PLC) could reverse the synergistic effect of bradykinin with ATP depletion on ROS generation, mitochondrial damage, accumulation of intracellular/mitochondrial calcium, and apoptosis. Activation of B2R aggravates ROS generation, mitochondrial damage, and cell death induced by ATP depletion. These effects may act through the PLC-Ca(2+) signaling pathway.  相似文献   

8.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   

9.
Depletion of cellular GSH by diethyl maleate (DEM) potentiates CH2O toxicity in isolated rat hepatocytes and it was postulated that this increase in toxicity is due to the further decrease in GSH caused by CH2O in DEM-pretreated hepatocytes (1). The present investigation was conducted to investigate further the effects of CH2O, DEM, and acrolein (a compound which is structurally related to CH2O and DEM) on subcellular GSH pools and on protein sulfhydryl groups (PSH). CH2O caused a decrease in cytosolic GSH but had no effect on mitochondrial GSH either in previously untreated hepatocytes or in DEM-pretreated hepatocytes in which GSH was approximately 25% of control. DEM decreased both cytosolic and mitochondrial GSH but it did not produce toxicity. Neither CH2O (up to 7.5 mM) nor DEM (20 mM) decreased PSH. However, in cells pretreated with 1 mM DEM, CH2O (7.5 mM) decreased PSH and this effect preceded cell death. Acrolein decreased both cytosolic and mitochondrial GSH and it also decreased PSH significantly prior to causing cell death. CH2O and acrolein stimulated phosphorylase alpha activity, indicative of an increase in cytosolic free Ca2+, by a PSH-independent and PSH-dependent mechanism, respectively. These results suggest that the further depletion of cellular GSH by CH2O in DEM-pretreated cells is not due to the depletion of mitochondrial GSH. CH2O toxicity in DEM-pretreated cells is, however, correlated with depletion of PSH. The critical sulfhydryl protein(s) responsible for cell death remain to be more clearly defined.  相似文献   

10.
We recently described that brief exposure of HL60 cells to a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) and 2-methyl-4-isothiazolin-3-one (MI) induces apoptosis at low concentrations (0.001-0.01%) and necrosis at higher concentrations (0.05-0.1%). In this study, we show that glutathione (GSH) depletion, reactive oxygen species generation, hyperpolarization of mitochondrial transmembrane potential (DeltaPsim) and formation of protein-GSH mixed disulphides (S-glutathionylation) are early molecular events that precede the induction of cell death by CMI/MI. When the cells exhibit common signs of apoptosis, they show activation of caspase-9, reduction of DeltaPsim and, more importantly, decreased protein S-glutathionylation. In contrast, necrosis is associated with severe mitochondrial damage and maximal protein S-glutathionylation. CMI/MI-induced cytotoxicity is also accompanied by decreased activity of GSH-related enzymes. Pre-incubation with L-buthionine-(S,R)-sulfoximine (BSO) clearly switches the mode of cell death from apoptosis to necrosis at 0.01% CMI/MI. Collectively, these results demonstrate that CMI/MI alters the redox status of HL60 cells, and the extent and kinetics of GSH depletion and S-glutathionylation appear to determine whether cells undergo apoptosis or necrosis. We hypothesize that S-glutathionylation of certain thiol groups accompanied by GSH depletion plays a critical role in the molecular mechanism of CMI/MI cytotoxicity.  相似文献   

11.
Our recent study has demonstrated that cellular redox imbalance can directly initiate apoptosis in a mitotic competent PC-12 cell line without the involvement of reactive oxygen species (ROS). However, whether cell apoptosis induced by ROS is, in fact, mediated by a loss of redox balance caused by the oxidant is unresolved. The linkage between oxidant-mediated apoptosis and the induction of cellular redox was examined in PC-12 cells using the oxidant, tert-butylhydroperoxide (TBH). TBH caused cell apoptosis in 24 h that was preceded by an early increase (30 min) in oxidized glutathione (GSSG). Pretreatment with N-acetyl cysteine prevented TBH-induced GSSG increases and cell apoptosis. Altered Bax/BcL-2 expression and release of mitochondrial cytochrome c occurred post-redox imbalance and was kinetically linked to caspase-3 activation and poly ADP-ribose polymerase cleavage. Moreover, cell apoptosis was attenuated by inhibition of caspase-9, but not caspase-8, and blockade of mitochondrial ROS generation and permeability transition pore attenuated caspase 3 activation and cell apoptosis. Collectively, these results show that TBH-induced GSSG elevation is associated with the disruption of mitochondrial integrity, activation of caspase-3 and cell apoptosis. This redox induction of the apoptotic cascade was dissociated from cellular GSH efflux.  相似文献   

12.
Chromosomal DNA and mitochondrial dysfunctions play a role on mammalian cell death induced by oxidative stress. The major biochemical dysfunction of chromosome is the presence of an ordered cleavage of the DNA backborn, which is separated and visualized as an electrophoretic pattern of fragments. Oxidative stress provides chromatin dysfunction such as single strand and double strand DNA fragmentation leading to cell death. More than 1 Mb of giant DNA, 200-800 kb or 50-300 kb high molecular weight (HMW) DNA and internucleosomal DNA fragments are produced during apoptosis or necrosis induced by oxidative stress such as glutathione (GSH) depletion in several types of mammalian cells. Reactive oxygen species (ROS)-mediated DNA fragmentation is enhanced by polyunsaturated fatty acids including arachidonic acid or their hydroperoxides, leading to necrosis. Mitochondrial dysfunction on decrease of trans membrane potential, accumulation of ROS, membrane permeability transition and release of apoptotic factors during apoptosis or necrosis has been implicated. This review refers to the correlation of chromosomal DNA fragmentation and apoptosis or necrosis induced by GSH depletion, and the possible mechanisms of oxidative stress-induced cell death.  相似文献   

13.
Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O 2 ?? and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, l-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.  相似文献   

14.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

15.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

16.
J Liu  H M Shen  C N Ong 《Life sciences》2001,69(16):1833-1850
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.  相似文献   

17.
Mitochondrial fusion and fission are important aspects of eukaryotic cell function that permit the adoption of varied mitochondrial morphologies depending upon cellular physiology. We previously observed that ethacrynic acid (EA) induced mitochondrial fusion in cultured BSC-1 and CHO/wt cells. However, the mechanism responsible for it was not clear since EA has a number of known cellular effects including glutathione (GSH) depletion and alkylation of cysteine residues. To gain insight, we have tested the effects of a variety of compounds on EA induced cellular toxicity and mitochondrial fusion. N-acetyl cysteine (NAC), a GSH precursor, was found to abrogate both the toxic and fusion-inductive effects, whereas diethylmaleate (dEM), a GSH depletor, potentiated both these effects in a dose-dependent manner. However, treatment with dEM alone, which depleted GSH to the same degree as EA, did not induce mitochondrial fusion. These results indicate that although detoxification of EA via formation of GSH conjugates is dependant upon GSH levels, the depletion of GSH by EA is not responsible for its effect on mitochondrial fusion. Dihydro-EA (DH-EA), a saturated EA analogue, lacked EA's toxicity and effect on fusion, indicating that the alpha,beta-unsaturated ketone is central to its observed effects. N-ethylmaleimide (NEM), another well-known cysteine-alkylator, also induced mitochondrial fusion at near toxic concentrations. These data suggests that cysteine-alkylation is the causative factor for fusion and toxicity. In live BSC-1 cells, EA induced fusion of mitochondria occurred very rapidly (<20 min), which suggests that it is inducing fusion by modifying certain critical cysteine residue(s) in proteins involved in the process.  相似文献   

18.
This study demonstrates cytotoxic and genotoxic potential of juglone, a chief constituent of walnut, and its underlying mechanisms against melanoma cells. MTT assay and clonogenic assay were used to study cytotoxicity, micronucleus assay to assess genotoxicity, glutathione (GSH) assay and 2′,7′-dicholorofluorescein diacetate (DCFH-DA) assay to evaluate the oxidative stress induction. Apoptosis/necrosis induction was analysed by flow cytometry. We observed a concentration-dependent decrease in cell survival with a corresponding increase in the lactate dehydrogenase levels. A dose-dependent increase in the frequency of micronucleated binucleate cells indicated the potential of juglone to induce cytogenetic damage in melanoma tumor cells. Moreover, results of the micronuclei study indicated division delay in the proliferating cell population by showing decrease in the cytokinesis blocked proliferation index. Further, juglone-induced apoptosis and necrosis could be demonstrated by oligonucleosomal ladder formation, microscopic analysis, increase in the hypodiploid fraction (sub Go peak in DNA histogram), as well as an increased percentage of AnnexinV(+)/PI(+) cells detected by flow cytometry. A significant concentration-dependent decrease in the glutathione levels and increase in dichlorofluorescein (DCF) fluorescence after juglone treatment confirmed the ability of juglone to generate intracellular reactive oxygen species. The cytotoxic effect of juglone can be attributed to mechanisms including the induction of oxidative stress, cell membrane damage, and a clastogenic action leading to cell death by both apoptosis and necrosis.  相似文献   

19.
Antimycin A (AMA), an inhibitor of electron transport in mitochondria, has been used as a reactive oxygen species (ROS) generator in biological systems. Here, we investigated the in vitro effect of AMA on apoptosis in HeLa cells. AMA inhibited the growth of HeLa cells with an IC(50) of about 50 microM. AMA efficiently induced apoptosis, as evidenced by flow cytometric detection of sub-G1 DNA content, annexin V binding assay, and DAPI staining. This apoptotic process was accompanied by the loss of mitochondrial membrane potential (DeltaPsi(m)), Bcl-2 down-regulation, Bax up-regulation, and PARP degradation. All caspase inhibitors used in this experiment, especially pan-caspase inhibitor (Z-VAD), could rescue some HeLa cells from AMA-induced cell death. When we examined the changes of the ROS, H(2)O(2) or O(2) (.-), in AMA-treated cells, H(2)O(2) and O(2) (.-) were markedly increased. In addition, we detected the depletion of GSH content in AMA-treated cells. Pan-caspase inhibitor showing the efficient anti-apoptotic effect significantly reduced GSH depletion by AMA. Superoxide dismutase (SOD) and catalase did not reduce intracellular ROS, but these could strongly rescue the cells from apoptosis. However, these anti-apoptotic effects were not accompanied by the recovery of GSH depletion. Interestingly, catalase significantly decreased the CMF negative (GSH depletion) and propidium iodide (PI) positive cells, indicating that catalase strongly maintained the integrity of the cell membrane in CMF negative cells. Taken together, these results demonstrate that AMA potently generates ROS, induces the depletion of GSH content in HeLa cells, and strongly inhibits the growth of HeLa cells throughout apoptosis.  相似文献   

20.
alpha-Hederin, a pentacyclic triterpene saponin isolated from the seeds of Nigella sativa, was recently reported to have potent in vivo antitumor activity against LL/2 (Lewis Lung carcinoma) in BDF1 mice. In this study we observed that alpha-hederin caused a dose- and time-dependent increase in apoptosis of murine leukemia P388 cells. In order to evaluate the possible mechanisms for apoptosis, the effects of alpha-hederin on intracellular thiol concentration, including reduced glutathione (GSH), and protein thiols, and the effects of pretreatment with N-acetlycysteine (NAC), a precursor of intracellular GSH synthesis, or buthionine sulfoxime (BSO), a specific inhibitor of intracellular GSH synthesis, on alpha-hederin-induced apoptosis were investigated. It was found that alpha-hederin rapidly depleted intracellular GSH and protein thiols prior to the occurrence of apoptosis. NAC significantly alleviated alpha-hederin-induced apoptosis, while BSO augmented alpha-hederin-induced apoptosis significantly. The depletion of cellular thiols observed after alpha-hederin treatment caused disruption of mitochondrial membrane potential (deltapsi(m)) and subsequently increased the production of reactive oxygen species (ROS) in P388 cells at an early time point. Bongkrekic acid (BA), a ligand of the mitochondrial adenine nucleotide translocator, and cyclosporin (CsA) attenuated the alpha-hederin-induced loss of deltapsi(m), and ROS production. Thus, oxidative stress after alpha-hederin treatment is an important event in alpha-hederin-induced apoptosis. As observed in this study, permeability transition of mitochondrial membrane occurs after depletion of GSH and precedes a state of reactive oxygen species (ROS) generation. Further, we observed that alpha-hederin caused the release of cytochrome c from the mitochondria to cytosol, leading to caspase-3 activation. Our findings thus demonstrate that changes in intracellular thiols and redox status leading to perturbance of mitochondrial functions are important components in the mechanism of alpha-hederin-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号