首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor for which new therapeutic approaches are urgently required. Unfolded protein response (UPR) plays an important role in the progression of GBM and is a promising target for developing novel therapeutic interventions. We identified ubiquitin-activating enzyme 1 (UBA1) inhibitor TAK-243 that can strongly induce UPR in GBM cells. In this study, we evaluated the functional activity and mechanism of TAK-243 in preclinical models of GBM. TAK-243 significantly inhibited the survival, proliferation, and colony formation of GBM cell lines and primary GBM cells. It also revealed a significant anti-tumor effect on a GBM PDX animal model and prolonged the survival time of tumor-bearing mice. Notably, TAK-243 more effectively inhibited the survival and self-renewal ability of glioblastoma stem cells (GSCs) than GBM cells. Importantly, we found that the expression level of GRP78 is a key factor in determining the sensitivity of differentiated GBM cells or GSCs to TAK-243. Mechanistically, UBA1 inhibition disrupts global protein ubiquitination in GBM cells, thereby inducing ER stress and UPR. UPR activates the PERK/ATF4 and IRE1α/XBP signaling axes. These findings indicate that UBA1 inhibition could be an attractive strategy that may be potentially used in the treatment of patients with GBM, and GRP78 can be used as a molecular marker for personalized treatment by targeting UBA1.Subject terms: CNS cancer, Cancer stem cells  相似文献   

2.
3.
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.  相似文献   

4.
5.
Glioblastomas (GBMs) are the most lethal and common types of primary brain tumors. The hallmark of GBMs is their highly infiltrative nature. The cellular and molecular mechanisms underlying the aggressive cancer invasion in GBMs are poorly understood. GBM displays remarkable cellular heterogeneity and hierarchy containing self-renewing glioblastoma stem cells (GSCs). Whether GSCs are more invasive than non-stem tumor cells and contribute to the invasive phenotype in GBMs has not been determined. Here we provide experimental evidence supporting that GSCs derived from GBM surgical specimens or xenografts display greater invasive potential in vitro and in vivo than matched non-stem tumor cells. Furthermore, we identified several invasion-associated proteins that were differentially expressed in GSCs relative to non-stem tumor cells. One of such proteins is L1CAM, a cell surface molecule shown to be critical to maintain GSC tumorigenic potential in our previous study. Immunohistochemical staining showed that L1CAM is highly expressed in a population of cancer cells in the invasive fronts of primary GBMs. Collectively, these data demonstrate the invasive nature of GSCs, suggesting that disrupting GSCs through a specific target such as L1CAM may reduce GBM cancer invasion and tumor recurrence.  相似文献   

6.
Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.  相似文献   

7.
8.
Glioblastoma multiforme (GBM) is the most aggressive and common type of human primary brain tumor. Glioblastoma stem-like cells (GSCs) have been proposed to contribute to tumor initiation, progression, recurrence, and therapeutic resistance of GBM. Therefore, targeting GSCs could be a promising strategy to treat this refractory cancer. Calmodulin (CaM), a major regulator of Ca2+-dependent signaling, controls various cellular functions via interaction with multiple target proteins. Here, we investigated the anticancer effect of hydrazinobenzoylcurcumin (HBC), a Ca 2+/CaM antagonist, against GSCs derived from U87MG and U373MG cells. HBC significantly inhibited not only the self-renewal capacity, such as cell growth and neurosphere formation but also the metastasis-promoting ability, such as migration and invasion of GSCs. HBC induced apoptosis of GSCs in a caspase-dependent manner. Notably, HBC repressed the phosphorylation of Ca 2+/CaM-dependent protein kinase II (CaMKII), c-Met, and its downstream signal transduction mediators, thereby reducing the expression levels of GSC markers, such as CD133, Nanog, Sox2, and Oct4. In addition, the knockdown of CaMKIIγ remarkably decreased the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking c-Met signaling pathway in U87MG GSCs. These results suggest that HBC suppresses the stem-like features of GBM cells via downregulation of CaM/CaMKII/c-Met axis and therefore CaMKII may be a novel therapeutic target to eliminate GSCs.  相似文献   

9.
10.
11.
12.
13.
Glioblastoma(GBM)is the most common and most aggressive primary brain tumor in adults.The existence of a small population of stem-like tumor cells that efficiently propagate tumors and resist cytotoxic therapy is one proposed mechanism leading to the resilient behavior of tumor cells and poor prognosis.In this study,we performed an in-depth analysis of the DNA methylation landscape in GBMderived cancer stem cells(GSCs).Parallel comparisons of primary tumors and GSC lines derived from these tumors with normal controls(a neural stem cell(NSC)line and normal brain tissue)identified groups of hyper- and hypomethylated genes that display a trend of either increasing or decreasing methylation levels in the order of controls,primary GBMs,and their counterpart GSC lines,respectively.Interestingly,concurrent promoter hypermethylation and gene body hypomethylation were observed in a subset of genes including MGMT,AJAP1 and PTPRN2.These unique DNA methylation signatures were also found in primary GBM-derived xenograft tumors indicating that they are not tissue culture-related epigenetic changes.Integration of GSC-specific epigenetic signatures with gene expression analysis further identified candidate tumor suppressor genes that are frequently down-regulated in GBMs such as SPINT2,NEFM and PENK.Forced re-expression of SPINT2 reduced glioma cell proliferative capacity,anchorage independent growth,cell motility,and tumor sphere formation in vitro.The results from this study demonstrate that GSCs possess unique epigenetic signatures that may play important roles in the pathogenesis of GBM.  相似文献   

14.
The modes of proliferation and differentiation of neural stem cells (NSCs) are coordinately controlled during development, but the underlying mechanisms remain largely unknown. In this study, we show that the protooncoprotein Myc and the tumor suppressor p19ARF regulate both NSC self-renewal and their neuronal and glial fate in a developmental stage–dependent manner. Early-stage NSCs have low p19ARF expression and retain a high self-renewal and neurogenic capacity, whereas late-stage NSCs with higher p19ARF expression possess a lower self-renewal capacity and predominantly generate glia. Overexpression of Myc or inactivation of p19ARF reverts the properties of late-stage NSCs to those of early-stage cells. Conversely, inactivation of Myc or forced p19ARF expression attenuates self-renewal and induces precocious gliogenesis through modulation of the responsiveness to gliogenic signals. These actions of p19ARF in NSCs are mainly mediated by p53. We propose that opposing actions of Myc and the p19ARF–p53 pathway have important functions in coordinated developmental control of self-renewal and cell fate choices in NSCs.  相似文献   

15.
Primary malignant brain cancer, one of the most deadly diseases, has a high rate of recurrence after treatment. Studies in the past several years have led to the hypothesis that the root of the recurrence may be brain tumor stem cells (BTSCs), stem-like subpopulation of cells that are responsible for propagating the tumor. Current treatments combining surgery and chemoradiotherapy could not eliminate BTSCs because these cells are highly infiltrative and possess several properties that can reduce the damages caused by radiation or anti-cancer drugs. BTSCs are similar to NSCs in molecular marker expression and multi-lineage differentiation potential. Genetic analyses of Drosophila CNS neoplasia, mouse glioma models, and human glioma tissues have revealed a link between increased NSC self-renewal and brain tumorigenesis. Furthermore, data from various rodent models of malignant brain tumors have provided compelling evidence that multipotent NSCs and lineage-restricted neural progenitor cells (NPCs) could be the cell origin of brain tumors. Thus, the first event of brain tumorigenesis might be the occurrence of oncogenic mutations in the stem cell self-renewal pathway in an NSC or NPC. These mutations convert the NSC or NPC to a BTSC, which then initiates and sustains the growth of the tumor. The self-renewal of BTSCs is controlled by several evolutionarily conserved signaling pathways and requires an intact vascular niche. Targeting these pathways and the vascular niche could be a principle in novel brain tumor therapies aimed to eliminate BTSCs.  相似文献   

16.
BackgroundGlioblastoma (GBM) is the most aggressive type of primary brain tumor, characterized by the intrinsic resistance to chemotherapy due to the presence of a highly aggressive Cancer Stem Cell (CSC) sub-population. In this context, Bone Morphogenetic Proteins (BMPs) have been demonstrated to induce CSC differentiation and to sensitize GBM cells to treatments.MethodsThe BMP-2 mimicking peptide, named GBMP1a, was synthesized on solid-phase by Fmoc chemistry. Structural characterization and prediction of receptor binding were obtained by Circular Dicroism (CD) and NRM analyses. Activation of BMP signalling was evaluated by a luciferase reporter assay and western blot. Pro-differentiating effects of GBMP1a were verified by immunostaining and neurosphere assay in primary glioblastoma cultures.ResultsCD and NMR showed that GBMP1a correctly folds into expected tridimensional structures and predicted its binding to BMPR-IA to the same epitope as in the native complex. Reporter analysis disclosed that GBMP1a is able to activate BMP signalling in GBM cells. Moreover, BMP-signalling activation was specifically dependent on smad1/5/8 phosphorylation. Finally, we confirmed that GBMP1a treatment is sufficient to enhance osteogenic differentiation of Mesenchymal Stem Cells and to induce astroglial differentiation of glioma stem cells (GSCs) in vitro.ConclusionsGBMP1a was demonstrated to be a good inducer of GSC differentiation, thus being considered a potential anti-cancer tool to be further developed for GBM treatment.General significanceThese data highlight the role of BMP-mimicking peptides as potential anti-cancer agents against GBM and stimulate the further development of GBMP1a-based structures in order to enhance its stability and activity.  相似文献   

17.
18.
The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle.  相似文献   

19.
Glioblastoma multiforme (GBM) is among the most aggressive tumor types and is essentially an incurable malignancy characterized by resistance to chemo-, radio-, and immunotherapy. GBM is maintained by a hierarchical cell organization that includes stem-like, precursor, and differentiated cells. Recurrence and maintenance of the tumor is attributed to a small population of undifferentiated tumor-initiating cells, defined as glioblastoma stem-like cells (GSLCs). This cellular hierarchy offers a potential treatment to induce differentiation of GSLCs away from tumor initiation to a more benign phenotype or to a cell type more amenable to standard therapies. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth and differentiation. In vitro, a BMP7 variant (BMP7v) decreased primary human GSLC proliferation, endothelial cord formation, and stem cell marker expression while enhancing neuronal and astrocyte differentiation marker expression. In subcutaneous and orthotopic GSLC xenografts, which closely reproduce the human disease, BMP7v decreased tumor growth and stem cell marker expression, while enhancing astrocyte and neuronal differentiation compared with control mice. In addition, BMP7v reduced brain invasion, angiogenesis, and associated mortality in the orthotopic model. Inducing differentiation of GSLCs and inhibiting angiogenesis with BMP7v provides a potentially powerful and novel approach to the treatment of GBM.  相似文献   

20.
Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three-dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient-derived D456 cells were cultured as suspension cultures (serum-free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum-free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum-free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long-term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号