首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluorescent nucleic acid base analogues are important spectroscopic tools for understanding local structure and dynamics of DNA and RNA. We studied the orientations and magnitudes of the electric dipole transition moments (EDTMs) of 6-methyl isoxanthopterin (6-MI), a fluorescent analogue of guanine that has been particularly useful in biological studies. Using a combination of absorption spectroscopy, linear dichroism (LD) and quantum chemical calculations, we identified six electronic transitions that occur within the 25 000–50 000 cm−1 spectral range. Our results indicate that the two experimentally observed lowest-energy transitions, which occur at 29 687 cm−1 (337 nm) and 34 596 cm−1 (289 nm), are each polarized within the plane of the 6-MI base. A third in-plane polarized transition is experimentally observed at 47 547 cm−1 (210 nm). The theoretically predicted orientation of the lowest-energy transition moment agrees well with experiment. Based on these results, we constructed an exciton model to describe the absorption spectra of a 6-MI dinucleotide–substituted double-stranded DNA construct. This model is in good agreement with the experimental data. The orientations and intensities of the low-energy electronic transitions of 6-MI reported here should be useful for studying local conformations of DNA and RNA in biologically important complexes.  相似文献   

2.
The quantum yield of the fluorescent tricyclic cytosine analogue, 1,3-diaza-2-oxophenothiazine, tC, is high and virtually unaffected by incorporation into both single- and double-stranded DNA irrespective of neighbouring bases (0.17–0.24 and 0.16–0.21, respectively) and the corresponding fluorescence decay curves are all mono-exponential, properties that are unmatched by any base analogue so far. The fluorescence lifetimes increase when going from tC free in solution (3.2 ns) to single- and double-stranded DNA (on average 5.7 and 6.3 ns, respectively). The mono-exponential decays further support previous NMR results where it was found that tC has a well-defined position and geometry within the DNA helix. Furthermore, we find that the oxidation potential of tC is 0.4 V lower than for deoxyguanosine, the natural base with the lowest oxidation potential. This suggests that tC may be of interest in charge transfer studies in DNA as an electron hole acceptor. We also present a novel synthetic route to the phosphoramidite form of tC. The results presented here together with previous work show that tC is a very good C-analogue that induces minimal perturbation to the native structure of DNA. This makes tC unique as a fluorescent base analogue and is thus highly interesting in a range of applications for studying e.g. structure, dynamics and kinetics in nucleic acid systems.  相似文献   

3.
In our previous communication we reported the enzymatic recognition of unnatural imidazopyridopyrimidine:naphthyridine (Im:Na) base pairs, i.e. ImON:NaNO and ImNO:NaON, using the Klenow fragment exo [KF (exo)]. We describe herein the successful results of (i) improved enzymatic recognition for ImNO:NaON base pairs and (ii) further primer extension reactions after the Im:Na base pairs by Deep Vent DNA polymerase exo [Deep Vent (exo)]. Since KF (exo) did not catalyze primer extension reactions after the Im:Na base pair, we carried out a screening of DNA polymerases to promote the primer extension reaction as well as to improve the selectivity of base pair recognition. As a result, a family B DNA polymerase, especially Deep Vent (exo), seemed most promising for this purpose. In the ImON:NaNO base pair, incorporation of NaNOTP against ImON in the template was preferable to that of the natural dNTPs, while incorporation of dATP as well as dGTP competed with that of ImONTP when NaNO was placed in the template. Thus, the selectivity of base pair recognition by Deep Vent (exo) was less than that by KF (exo) in the case of the ImON:NaNO base pair. On the other hand, incorporation of NaONTP against ImNO in the template and that of ImNOTP against NaON were both quite selective. Thus, the selectivity of base pair recognition was improved by Deep Vent (exo) in the ImNO:NaON base pair. Moreover, this enzyme catalyzed further primer extension reactions after the ImNO:NaON base pair to afford a faithful replicate, which was confirmed by MALDI-TOF mass spectrometry as well as the kinetics data for extension fidelity next to the ImNO:NaON base pair. The results presented in this paper revealed that the ImNO:NaON base pair might be a third base pair beyond the Watson–Crick base pairs.  相似文献   

4.
We synthesized various C8-naphthylethynylated 2′-deoxyadenosine derivatives and investigated their photophysical properties. Among them, cyano- and N,N-dimethylamino-substituted 8-naphthylethynylated 2′-deoxyadenosine derivatives (cnA and dnA) showed strong fluorescence with high quantum yields and a remarkable solvatofuorochromicity. In particular, fluorescence of N,N-dimethylamino-substituted 2,6dnA was not quenched by neighboring guanines (Gs) when incorporated in DNA duplexes, in contrast to cnA. We developed a new fluorescent probe containing 2,6dnA that can be used for the detection of target DNA via a bulge formation regardless of the neighboring sequences.  相似文献   

5.
Through binding and fluorescence studies of oligonucleotides covalently attached to a pyrene group via one carbon linker at the sugar residue, we previously found that pyrene-modified RNA oligonucleotides do not emit well in the single-stranded form, yet the attached pyrene emits with a significantly high quantum yield upon binding to a complementary RNA strand. In sharp contrast, similarly modified pyrene–DNA probes exhibit very weak fluorescence both in the double-stranded and single-stranded forms. The pyrene-modified RNA oligonucleotides therefore provide a useful tool for monitoring RNA hybridization. The purpose of this paper is to present the structural basis for the different fluorescence properties of pyrene-modified RNA/RNA and pyrene-modified DNA/DNA duplexes. The results of absorption, fluorescence anisotropy and circular dichroism studies all consistently indicated that the pyrene attached to the RNA duplex is located outside of the duplex, whereas the pyrene incorporated into the DNA duplex intercalates into the double helix. 1H NMR measurements unambiguously confirmed that the pyrene attached to the DNA duplex indeed intercalates between the base pairs of the duplex. Molecular dynamics simulations support these differences in the local structural elements around the pyrene between the pyrene–RNA/RNA and the pyrene–DNA/DNA duplexes.  相似文献   

6.
In this study, we investigated the products formed following the reaction of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (B[a]PDE) with 2′-deoxynucleoside 3′-monophosphates. The B[a]PDE plus 2′-deoxynucleotide reaction mixtures were purified using solid phase extraction (SPE) and subjected to HPLC with fluorescence detection. Fractions corresponding to reaction product peaks were collected and desalted using SPE prior to analysis for the presence of molecular ions corresponding to m/z 648, 632, 608 and 623 [MH] consistent with B[a]PDE adducted (either on the base or phosphate group) 2′-deoxynucleotides of guanine, adenine, cytosine and thymine, respectively, using LC-ESI-MS/MS collision-induced dissociation (CID). Reaction products were identified having CID product ion spectra containing product ions at m/z 452, 436 and 412 [(B[a]Ptriol+base)H], resulting from cleavage of the glycosidic bond between the 2′-deoxyribose and base, corresponding to B[a]PDE adducts of guanine, adenine and cytosine, respectively. Further reaction products were identified having unique CID product ion spectra characteristic of B[a]PDE adduct formation with the phosphate group of the 2′-deoxynucleotide. The presence of product ions at m/z 399 and 497 were observed for all four 2′-deoxynucleotides, corresponding to [(B[a]Ptriol+phosphate)H] and [(2′-deoxyribose+phosphate+B[a]Ptriol)H], respectively. In conclusion, this investigation provides the first direct evidence for the formation of phosphodiester adducts by B[a]PDE following reaction with 2′-deoxynucleotides.  相似文献   

7.
Low-fidelity DNA synthesis by human DNA polymerase theta   总被引:2,自引:1,他引:1  
Human DNA polymerase theta (pol θ or POLQ) is a proofreading-deficient family A enzyme implicated in translesion synthesis (TLS) and perhaps in somatic hypermutation (SHM) of immunoglobulin genes. These proposed functions and kinetic studies imply that pol θ may synthesize DNA with low fidelity. Here, we show that when copying undamaged DNA, pol θ generates single base errors at rates 10- to more than 100-fold higher than for other family A members. Pol θ adds single nucleotides to homopolymeric runs at particularly high rates, exceeding 1% in certain sequence contexts, and generates single base substitutions at an average rate of 2.4 × 10−3, comparable to inaccurate family Y human pol κ (5.8 × 10−3) also implicated in TLS. Like pol κ, pol θ is processive, implying that it may be tightly regulated to avoid deleterious mutagenesis. Pol θ also generates certain base substitutions at high rates within sequence contexts similar to those inferred to be copied by pol θ during SHM of immunoglobulin genes in mice. Thus, pol θ is an exception among family A polymerases, and its low fidelity is consistent with its proposed roles in TLS and SHM.  相似文献   

8.
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5′-d(CCTACGCTACC) sequence by photochemically generated CO3·− radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5′-d(GpCpT) was exposed to CO3·− radicals, and the cyclic nature of the 5′-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5′-d(GpCnpT) and 5′-d(TpCnpG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5′-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5′-d(TTACGTACGTAA) sequence following exposure to CO3·− radicals and enzymatic excision of the 5′-d(G*pT*) product.  相似文献   

9.
The cocaine aptamer is a DNA molecule that binds cocaine at the junction of three helices. The bifunctional spectroscopic probe Ç was incorporated independently into three different positions of the aptamer and changes in structure and dynamics upon addition of the cocaine ligand were studied. Nucleoside Ç contains a rigid nitroxide spin label and can be studied directly by electron paramagnetic resonance (EPR) spectroscopy and fluorescence spectroscopy after reduction of the nitroxide to yield the fluoroside Çf. Both the EPR and the fluorescence data for aptamer 2 indicate that helix III is formed before cocaine binding. Upon addition of cocaine, increased fluorescence of a fully base-paired Çf, placed at the three-way junction in helix III, was observed and is consistent with a helical tilt from a coaxial stack of helices II and III. EPR and fluorescence data clearly show that helix I is formed upon addition of cocaine, concomitant with the formation of the Y-shaped three-way helical junction. The EPR data indicate that nucleotides in helix I are more mobile than nucleotides in regular duplex regions and may reflect increased dynamics due to the short length of helix I.  相似文献   

10.
Oxanine (O) is a deamination product derived from guanine with the nitrogen at the N1 position substituted by oxygen. Cytosine, thymine, adenine, guanine as well as oxanine itself can be incorporated by Klenow Fragment to pair with oxanine in a DNA template with similar efficiency, indicating that oxanine in DNA may cause various mutations. As a nucleotide, deoxyoxanosine may substitute for deoxyguanosine to complete a primer extension reaction. Endonuclease V, an enzyme known for its enzymatic activity on uridine-, inosine- and xanthosine-containing DNA, can cleave oxanosine-containing DNA at the second phosphodiester bond 3′ to the lesion. Mg2+ or Mn2+, and to a small extent Co2+ or Ni2+, support the oxanosine-containing DNA cleavage activity. All four oxanosine-containing base pairs (A/O, T/O, C/O and G/O) were cleaved with similar efficiency. The cleavage of double-stranded oxanosine-containing DNA was ~6-fold less efficient than that of double-stranded inosine-containing DNA. Single-stranded oxanosine-containing DNA was cleaved with a lower efficiency as compared with double-stranded oxanosine-containing DNA. A metal ion enhances the binding of endonuclease V to double-stranded and single-stranded oxanosine-containing DNA 6- and 4-fold, respectively. Hypothetic models of oxanine-containing base pairs and deaminated base recognition mechanism are presented.  相似文献   

11.
We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O2 electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO2 saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O2 per mole photons) was slightly, if at all, affected by mild water stress (>−1.5 megapascals). (c) Severe water stress (<−1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (Fv/Fm) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred.  相似文献   

12.
Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O2˙) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals (˙OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O2˙, H2O2, and ˙OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O2˙ production. (3) Experimental generation of ˙OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by ˙OH produced by endogenous cell wall peroxidase in the presence of NADH and H2O2. (4) Inhibition of endogenous ˙OH formation by O2˙ or ˙OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate ˙OH, and to respond to ˙OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that ˙OH formation is essential for normal root growth.  相似文献   

13.
DNA polymerases achieve high-fidelity DNA replication in part by checking the accuracy of each nucleotide that is incorporated and, if a mistake is made, the incorrect nucleotide is removed before further primer extension takes place. In order to proofread, the primer-end must be separated from the template strand and transferred from the polymerase to the exonuclease active center where the excision reaction takes place; then the trimmed primer-end is returned to the polymerase active center. Thus, proofreading requires polymerase-to-exonuclease and exonuclease-to-polymerase active site switching. We have used a fluorescence assay that uses differences in the fluorescence intensity of 2-aminopurine (2AP) to measure the rates of active site switching for the bacteriophage T4 DNA polymerase. There are three findings: (i) the rate of return of the trimmed primer-end from the exonuclease to the polymerase active center is rapid, >500 s1; (ii) T4 DNA polymerase can remove two incorrect nucleotides under single turnover conditions, which includes presumed exonuclease-to-polymerase and polymerase-to-exonuclease active site switching steps and (iii) proofreading reactions that initiate in the polymerase active center are not intrinsically processive.  相似文献   

14.
Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO2 per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (FO) was increased and induced fluorescence ([FP-FI]/FO) was reduced. The effect was greatest in the undroughted plants grown at 660 μl CO2 L−1. By week 22 at 330 μl CO2 L−1 acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 μl CO2 L−1. The light saturated rate of photosynthesis of needles with adequate P was higher at 660 μl CO2 L−1 than at 330 μl CO2 L−1, whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO2 concentration. The average growth increase due to CO2 enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 μl CO2 L−1, there was a reduction in the maximal rate of quenching of fluorescence (RQ) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 μl CO2 L−1 this response was eliminated showing that CO2 enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO2 enrichment was 37% in drought stressed plants and 19% in unstressed plants.  相似文献   

15.
To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm (ε = 2.3 × 104 M−1 cm−1), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination and analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se … H–N), and the SeG and C form a base pair similar to the natural G–C pair though the Se-modification causes the base-pair to shift (approximately 0.3 Å). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.  相似文献   

16.
Potential roles of the abasic site lyase activity associated with AlkB homolog 1 (ALKBH1) were assessed by studies focusing on the two cellular processes that create abasic sites as intermediates: base excision repair and class switch recombination. Alkbh1−/− pups (lacking exon 3) were born at a lower than expected frequency from heterozygous parents, suggesting a reduced survival rate and non-Mendelian inheritance, and they exhibited a gender bias in favor of males (70% males and 30% females). To study ALKBH1’s potential involvement in DNA repair, fibroblasts were isolated from Alkbh1−/− mice, spontaneously immortalized and tested for resistance to DNA damaging agents. Alkbh1−/− and isogenic cells expressing hALKBH1 showed no difference in survival to the DNA damaging agents methyl-methionine sulfate or H2O2. This result indicates that ALKBH1 does not play a major role in the base excision repair pathway. To assess ALKBH1’s role in class switch recombination, splenic B cells were isolated from Alkbh1−/− and Alkbh1+/+ mice and subjected to switching from IgM to IgG1. No differences were found in IgG1 switching, suggesting that Alkbh1 is not involved in class switch recombination of the immunoglobulin heavy chain during B lymphocyte activation.  相似文献   

17.
The DNA repair protein O6-alkylguanine alkyltransferase (AGT) is responsible for removing promutagenic alkyl lesions from exocyclic oxygens located in the major groove of DNA, i.e. the O6 and O4 positions of guanine and thymine. The protein carries out this repair reaction by transferring the alkyl group to an active site cysteine and in doing so directly repairs the premutagenic lesion in a reaction that inactivates the protein. In order to trap a covalent AGT–DNA complex, oligodeoxyribonucleotides containing the novel nucleoside N1,O6-ethanoxanthosine (eX) have been prepared. The eX nucleoside was prepared by deamination of 3′,5′-protected O6-hydroxyethyl-2′-deoxyguanosine followed by cyclization to produce 3′,5′-protected N1,O6-ethano-2′-deoxyxanthosine, which was converted to the nucleoside phosphoramidite and used in the preparation of oligodeoxyribonucleotides. Incubation of human AGT with a DNA duplex containing eX resulted in the formation of a covalent protein–DNA complex. Formation of this complex was dependent on both active human AGT and eX and could be prevented by chemical inactivation of the AGT with O6-benzylguanine. The crosslinking of AGT to DNA using eX occurs with high yield and the resulting complex appears to be well suited for further biochemical and biophysical characterization.  相似文献   

18.
Balance between Endogenous Superoxide Stress and Antioxidant Defenses   总被引:12,自引:2,他引:10       下载免费PDF全文
Cells devoid of cytosolic superoxide dismutase (SOD) suffer enzyme inactivation, growth deficiencies, and DNA damage. It has been proposed that the scant superoxide (O2) generated by aerobic metabolism harms even cells that contain abundant SOD. However, this idea has been difficult to test. To determine the amount of O2 that is needed to cause these defects, we modulated the O2 concentration inside Escherichia coli by controlling the expression of SOD. An increase in O2 of more than twofold above wild-type levels substantially diminished the activity of labile dehydratases, an increase in O2 of any more than fourfold measurably impaired growth, and a fivefold increase in O2 sensitized cells to DNA damage. These results indicate that E. coli constitutively synthesizes just enough SOD to defend biomolecules against endogenous O2 so that modest increases in O2 concentration diminish cell fitness. This conclusion is in excellent agreement with quantitative predictions based upon previously determined rates of intracellular O2 production, O2 dismutation, dehydratase inactivation, and enzyme repair. The vulnerability of bacteria to increased intracellular O2 explains the widespread use of superoxide-producing drugs as bactericidal weapons in nature. E. coli responds to such drugs by inducing the SoxRS regulon, which positively regulates synthesis of SOD and other defensive proteins. However, even toxic amounts of endogenous O2 did not activate SoxR, and SoxR activation by paraquat was not at all inhibited by excess SOD. Therefore, in responding to redox-cycling drugs, SoxR senses some signal other than O2.  相似文献   

19.
Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase–DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA–protein interaction than do tethered fluorophores. Here we report the incorporation of the 5′-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tCO), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication.  相似文献   

20.
A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 ± 1.5) × 108 copies of the 16S rRNA gene/μmol of Cl (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate () was determined to be 7.8 × 10−10 μmol of Cl (copy−1 day−1), indicating a maximum growth rate of 0.4 day−1. These average growth yield and values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day−1) and no-growth (0.09 day−1) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号