首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies 4B1 and 5F7 bind to distinct, nonoverlapping epitopes in the lac carrier protein. By use of immunofluorescence microscopy and radiolabeled monoclonal antibodies and Fab fragments, it is shown that both 4B1 and 5F7 bind to spheroplasts and to right-side-out vesicles, but only to a small extent to inside-out vesicles. Clearly, therefore, the lac carrier protein has an asymmetric orientation within the cytoplasmic membrane of Escherichia coli, and both epitopes are located on the periplasmic surface. In right-side-out vesicles, radiolabeled 4B1 binds with a stoichiometry of 1 mol of antibody per 2 mol of lac carrier protein, while radiolabeled 4B1 Fab fragments bind 1:1. Importantly, the intact antibody and its Fab fragments bind to proteoliposomes reconstituted with purified lac carrier protein with a stoichiometry very similar to that observed in right-side-out membrane vesicles. Thus, it seems highly likely that the orientation of the lac carrier protein in the reconstituted system is similar to that in the bacterial cytoplasmic membrane, at least with respect to 4B1 epitope.  相似文献   

2.
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.  相似文献   

3.
The two major membrane glycoproteins of human red cells, glycophorin and band 3, the anion exchange protein, were isolated from cells exofacially labeled with fluorescein and reconstituted into vesicles with defined transmembrane disposition. Uniform orientation of polypeptides was accomplished by two procedures: Vesicles with single protein units were obtained by a one-step dilution of a protein/detergent suspension with a vast excess of phospholipid. Vesicles with uniform orientation of protein were selected by affinity chromatography on derivatized Sepharoses (organomercurial, wheat germ agglutinin, aminoethyl or diethylaminoethyl). Vesicles with multiple protein units with uniform orientation were generated by vectorial immobilization of detergent solubilized proteins on the above affinity matrices and in situ formation of proteoliposomes by detergent substitution for phospholipid. The proteoliposomes were released from the column by addition of excess free ligand. The orientation of band 3 and glycophorin in the reconstituted vesicles was first assessed by immunofluorescence quenching, using anti-fluorescein antibodies, to quantitatively quench fluorescein residues exposed on the outer surface of vesicles. Further assessment was achieved by chromatographing the vesicles through various affinity and ionic matrices. Vesicle populations of higher than 90% homogeneity in protein orientation (right-side-out or inside-out) were obtained with both procedures. The above methods provide a convenient experimental tool for the oriented reconstitution of proteins and the evaluation of their transmembrane disposition.  相似文献   

4.
Rolf Bü  rgi  Franz Suter  Herbert Zuber 《BBA》1987,890(3):346-351
The transverse orientation of the light-harvesting chlorophyll a/b protein complex of Photosystem II (LHC II) in the thylakoid membrane of pea was investigated using surface radioiodination with Iodo-GenTM. The labelling effects on LHC II of four different membrane preparations were compared. One preparation was oriented right-side-out (intact thylakoids); two of them had an inside-out orientation exposing the lumenal surface (inside-out vesicles; PS II particles) and one had both sides of the membrane exposed (mechanically damaged thylakoids). It was found that LHC II could be iodinated only in membrane preparations with an exposed lumenal surface. Isolated apoproteins were chemically cleaved. Fragments analysis revealed a tyrosine residue located eight amino acids from the C-terminus as the single iodination site. It is concluded that the C-terminus of LHC II points towards the lumental side of the thylakoid. Differences in the labelling behaviour of the LHC apoproteins could be assigned to a heterogeneity in the C-terminal region in which the tyrosine residue is replaced by phenylalanine.  相似文献   

5.
Plasma membrane preparations of high purity (about 95%) are easily obtained by partitioning in aqueous polymer two-phase systems. These preparations, however, mainly contain sealed right-side-out (apoplastic side out) vesicles. Part of these vesicles have been turned inside-out by freezing and thawing, and sealed inside-out and right-side-out vesicles subsequently separated by repeating the phase partition step. Increasing the KCI concentration in the freeze/thaw medium as well as increasing the number of freeze/thaw cycles significantly increased the yield of inside-out vesicles. At optimal conditions, 15 to 25% of total plasma membrane protein was recovered as inside-out vesicles, corresponding to 5 to 10 milligrams of protein from 500 grams of sugar beet (Beta vulgaris L.) leaves. Based on enzyme latency, trypsin inhibition of NADH-cytochrome c reductase, and H+ pumping capacity, a cross-contamination of about 20% between the two fractions of oppositely oriented vesicles was estimated. Thus, preparations containing about 80% inside-out and 80% right-side-out vesicles, respectively, were obtained. ATPase activity and H+ pumping were both completely inhibited by vanadate (Ki ≈ 10 micromolar), indicating that the fractions were completely free from nonplasma membrane ATPases. Furthermore, the polypeptide patterns of the two fractions were close to identical, which shows that the vesicles differed in sidedness only. Thus, preparations of both inside-out and right-side-out plasma membrane vesicles are now available. This permits studies on transport, signal transduction mechanisms, enzyme topology, etc., using plasma membrane vesicles of either orientation.  相似文献   

6.
Right-side-out vesicles of plasma membrane from soybean (Glycine max Merr.) were isolated by aqueous two-phase partition. Inside-out vesicles were formed when these preparations were diluted or frozen and thawed. Sidedness (orientation) was determined by preparative free-flow electrophoresis, concanavalin A binding, and ATPase latency. Under usual conditions of aqueous two-phase partition, the bulk of the vesicles were strongly reactive with concanavalin A-peroxidase and showed a high level of structure-linked latency as expected of a right-side-out (cytoplasmic-side-in) orientation. The vesicles migrated as a single electrophoretic peak. When frozen and thawed, vesicle diameters were reduced and a second population of vesicles of increased electrophoretic mobility was obtained. This second population of vesicles was weakly reactive with concanavalin A-peroxidase and showed low latency as expected of an inside-out (cytoplasmic-side-out) orientation. If the plasma membrane vesicles were diluted with water, a mixture of right-side-out and inside-out vesicles again was obtained. However, some of the cytoplasmic-side-out vesicles that were concanavalin A-unreactive and had low ATPase latency migrated more slowly as a second, less electronegative peak, upon free-flow electrophoresis. The results suggest that right-side-out and inside-out plasma membrane vesicles differ in electrophoretic mobility but that both the orientation and the absolute electrophoretic mobility of the differently oriented vesicles may be influenced by the preparative conditions.  相似文献   

7.
The synthetic decapeptide NH2-Cys-Val-Gly-Ala-Val-Ser-Asp-Val-Lys-Ala-COOH (designated MBct10), which corresponds to the carboxyl terminus of the melibiose carrier of Escherichia coli, was synthesized and used to raise antibodies in a rabbit. Anti-MBct10 antibodies recognizes the normal melibiose carrier but not a truncated carrier lacking 14 carboxyl-terminal amino acids. Thus the antibodies are specific for the carboxyl terminus of the carrier and not for other domains of the protein. When right-side-out and inside-out membrane vesicles were probed with anti-MBct10 serum, only the inside-out vesicles bound antibody. The carboxyl terminus of the melibiose carrier protein is therefore exposed on the cytoplasmic surface of the membrane. The co-localization of both NH2- and carboxyl termini to the cytoplasmic surface dictates that the protein cross the membrane an even number of times. These data together with hydrophobicity analysis support a topological model for the melibiose carrier with 10 or 12 transmembrane domains.  相似文献   

8.
Inside-out spinach thylakoid vesicles can be isolated by aqueous polymer two-phase partition following mechanical disruption of spinach chloroplast lamellae (Andersson, B and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472) and a mechanism for their formation has been experimentally supported (Andersson B., Sundby, C. and Albertsson, P.-Å. (1980) Biochim. Biophys. Acta 599, 391–402). Upon disruption, inside-out vesicles may form under stacking conditions, e.g., in 5 mM MgCl2 or 150 mM NaCl, while disruption under destacking conditions, i.e., low concentrations of monovalent cations, gives only right-side-out vesicles. This study deals with the sidedness stability of the isolated inside-out thylakoid vesicles when stored or disrupted by sonication in various ionic environments. The sidedness of thylakoid vesicles was determined by their partition behaviour in an aqueous polymer phase system, direction of proton translocation and aggregation response (stacking) upon addition of MgCl2. The results show that no spontaneous change from everted to normal sidedness occurs upon storage of the inside-out thylakoids. In contrast, sonication of these vesicles under destacking conditions (5 mM NaCl) results in a nearly complete transformation to right-side-out orientation. Also, in the presence of 5 mM MgCl2 or 150 mM NaCl, sonication induced a change in sidedness of the inside-out vesicles but to a lesser extent. The stabilizing effect on the everted sidedness by cations was shown to be a result of preventing vesicle fragmentation by maintaining internal thylakoid appresions rather than by influencing the membrane curvature during resealing. Once released from an appressed state by overcoming the stacking forces, an opened thylakoid membrane shows an absolute preference for turning right-side-out in all media tested. These results strongly support the proposed formation mechanism, in which pairs of neighbouring grana membranes after disruption reseal with each other promoted by their close proximity. Since the inside-out vesicles derive from the grana appressions, their transformation back to normal sidedness exposes the outer membrane surface of appressed thylakoids. This region of the thylakoid membrane is normally hidden in the grana appressions and removal of grana leads concomitantly to lateral intermixing with non-appressed thylakoid components. Thus the current isolation of right-sided vesicles derived from the grana appressions should be a new tool for studies on the molecular organization of the thylakoid membrane.  相似文献   

9.
We describe here a new method, based on fluorescent techniques, for the determination of the orientation of membrane protein molecules present in vesicles. The method consists of: (a) attachment of a fluorescein derivative to sugar residues of glycoproteins and glycolipids in the cell membrane, and (b) the use of anti-fluorescein antibody, a highly efficient quencher of fluorescein fluorescence, for the quantitative evaluation of sidedness of transmembrane orientation of protein molecules in vesicles. Since antibody molecules do not permeate membranes, quenching is limited exclusively to sites exposed at the external surface of the vesicles. Addition of antibody to a fluorescently-labeled cell suspension results in a full and immediate quenching of the fluorescent signal. The method is highly sensitive (pM protein concentration), rapid and readily applicable to various vesicle preparations. With this method we assessed the orientation of vesicles derived from red blood cell membranes (ghosts) in isotonic medium and followed their inversion from right-side-out to inside-out orientation upon incubation in alkaline, low ionic strength medium.  相似文献   

10.
We describe here a new method, based on fluorescent techniques, for the determination of the orientation of membrane protein molecules present in vesicles. The method consists of: (a) attachment of a fluorescein derivative to sugar residues of glycoproteins and glycolipids in the cell membrane, and (b) the use of anti-fluorescein antibody, a highly efficient quencher of fluorescein fluorescence, for the quantitative evaluation of sidedness of transmembrane orientation of protein molecules in vesicles. Since antibody molecules do not permeate membranes, quenching is limited exclusively to sites exposed at the external surface of the vesicles. Addition of antibody to a fluorescently-labeled cell suspension results in a full and immediate quenching of the fluorescent signal. The method is highly sensitive (pM protein concentration), rapid and readily applicable to various vesicle preparations. With this method we assessed the orientation of vesicles derived from red blood cell membranes (ghosts) in isotonic medium and followed their inversion from right-side-out to inside-out orientation upon incubation in alkaline, low ionic strength medium.  相似文献   

11.
A partially purified preparation of the aspartate/glutamate carrier from bovine heart mitochondria was reconstituted into liposomal membranes by chromatography on hydrophobic ion exchange resins. Based on the favorable conditions of this reconstituted system the transmembrane orientation of the inserted carrier protein could be determined by functional analysis. For reliable measurement of the reconstituted aspartate-glutamate exchange activity an optimized inhibitor-stop technique using pyridoxal phosphate was developed. By simultaneous application of both forward and backward exchange experiments the practical usefulness of the reconstituted system could be extended to investigations including variation of internal and external substrate concentrations over a wide range. Thereby a complete set of Km values for both aspartate and glutamate at both the internal and external side of the proteoliposomes could be established. These experiments led to the following results and conclusions: (i) The observed substrate affinities are clearly different for the two different membrane sides both for aspartate (external 50 microM, internal 3 mM) and glutamate (external about 200 microM, internal 3 mM). (ii) The exclusive presence of only one type of transport affinity for every single substrate at one side of the liposomal membrane clearly demonstrates the asymmetric orientation of the functionally active carrier protein molecules. (iii) When comparing the values of these constants with published data obtained in mitochondria, an inside-out orientation of the aspartate/glutamate carrier after isolation and reinsertion into liposomes is strongly suggested.  相似文献   

12.
The Ca pump was reconstituted from the purified sarcoplasmic reticulum ATPase and excess soybean phospholipids by the freeze-thaw sonication procedure in the presence of cholate. In the absence of Ca precipitating agents, the reconstituted proteoliposomes accumulated Ca2+ at an initial rate of up to 0.7 mumol/mg per min at 25 degrees C, and a value of 1.54 was obtained for the coupling ratio between Ca uptake and Ca2+-dependent ATPase activities. The proteoliposomes were mainly unilamellar vesicles but were heterogeneous with respect to their size. When reconstituted at a lipid/protein ratio of 40, proteoliposomes had a buoyant density of about 1.04 and their average internal volume was 1.4-1.6 microliters/mg of phospholipids. More than 95% of the ATPase was incorporated randomly into these proteoliposomes and the fraction of proteoliposomes that represented about 50% of the total intravesicular isotope space contained right-side-out oriented enzyme. 86Rb efflux from the 86Rb-loaded proteoliposomes was found to be slow even at 25 degrees C. Therefore, the proteoliposomes prepared by the present simple method should be useful for the study of the side-specific interaction of ions such as alkali metal cations with the sarcoplasmic reticulum Ca pump.  相似文献   

13.
lac permease mutated at each of the 8 cysteinyl residues in the molecule was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The transport activity of proteoliposomes reconstituted with each mutant permease relative to the wild-type is virtually identical with that reported for intact cells and/or right-side-out membrane vesicles. Moreover, a double mutant containing Ser in place of both Cys148 and Cys154 exhibits significant ability to catalyze active lactose transport. The results provide strong confirmation for the contention that cysteinyl residues in lac permease do not play an important role in the transport mechanism. The effect of sulfhydryl oxidant 5-hydroxy-2-methyl-1,4-naphthoquinone on lactose transport in proteoliposomes reconstituted with wild-type or mutant permeases was also investigated, and the results indicate that inactivation is probably due to formation of a covalent adduct with Cys148 and/or Cys154 rather than disulfide formation. Thus, it seems unlikely that sulfhydryl-disulfide interconversion functions to regulate permease activity.  相似文献   

14.
The application of freeze-cleave electron microscopy to whole cells of Escherichia coli revealed that the particles exposed on the resulting two inner membrane faces are asymmetrically distributed. This method can therefore be used to determine the orientation of membrane vesicles from E. coli. Membrane vesicles freshly prepared in potassium phosphate buffer (K(+)-vesicles) by osmotic lysis of spheroplasts consisted almost entirely of right-side-out vesicles. Their size suggested that each cell gives rise to one vesicle. When the membrane vesicles were subjected to one cycle of freezing and thawing, the number of inside-out vesicles rose to about 25%. However, due to the small size of most of the inside-out vesicles, these contribute only 2 to 3% of the total membrane surface area of the preparation. The inside-out vesicles appear to arise from infoldings of the membrane of right-side-out vesicles. They also accumulate within the latter, thus producing multivesicular membrane sacs. Na(+)-vesicles (vesicles prepared in sodium phosphate buffer) subjected to freezing and thawing appeared to lose structural rigidity more than did K(+)-vesicles. In contrast to the membrane vesicles prepared by the osmotic lysis of spheroplasts, those obtained by breaking intact cells by a single passage through a French pressure cell were uniformly very small (only 40 to 110 nm in diameter); approximately 60 to 80% were inside-out. To reconcile the polarity of the membrane vesicles with the enzymic activities of such preparations, we propose that "dislocation" of membrane proteins occurs during osmotic lysis of spheroplasts.  相似文献   

15.
The kinetics of binding of mannitol to enzyme IImtl embedded in the membrane of vesicles with an inside-out or a right-side-out orientation were analyzed at 4 degrees C in the absence of the phosphoryl group donor, P-HPr. The binding to the right-side-out oriented vesicles equilibrated too fast to be monitored by the flow dialysis technique. On the other hand, with the inside-out oriented membrane vesicles two conformational changes of the enzyme could be detected kinetically. One change involved a recruitment of binding sites from a state of the enzyme where the binding sites were inaccessible from the cytoplasmic volume. The second change involved a conformational change of the enzyme that followed upon the initial binding to the cytoplasmic-facing binding site leading to a state with a higher affinity for mannitol. Equilibrium binding to the inside-out and right-side-out oriented membrane vesicles at 4 degrees C indicated that the two transitions did not represent the translocation of the binding site, free and with mannitol bound to it, to the other side of the membrane. Instead, a model is proposed in which the conformational changes represent transitions from states with the binding pocket opened to the cytoplasmic side of the membrane to occluded states of the enzyme in which the binding sites, with or without mannitol bound, are not accessible to either side of the membrane.  相似文献   

16.
Summary The lactose transport carrier from parental (X71/F'W3747) and mutant cells (54/F'5441) was reconstituted into proteoliposomes. Transport by the counterflow assay showed slightly greater activity in proteoliposomes prepared from extracts of the mutant membranes compared with that for the parental cell. The mutant carrier showed a threefold lowerK m but similarV max compared to the parent. On the other hand proteoliposomes from the mutant showed a defect in protonmotive force-driven accumulation, compared with the parent. With a pH gradient (inside alkaline) plus a membrane potential (inside negative) the parental proteoliposomes accumulated lactose 25-fold over the medium concentration while the mutant proteoliposomes accumulated sixfold. In a series of experiments proteoliposomes were exposed to proteolytic enzymes. Chrymotrypsin treatment resulted in 30% inhibition of counterflow activity for the reconstituted carrier from both parent and mutant. Papain produced 84% inhibition of transport by the reconstituted parental carrier but only 41% of that of the mutant. Trypsin and carboxypeptidase Y treatment had no effect on counterflow activity of either parent or mutant. Exposure of purified lactose carrier in proteoliposomes to carboxypeptidase Y resulted in the release of alanine and valine, the two C-terminal amino acids predicted from the DNA sequence.  相似文献   

17.
The membrane-bound complex of periplasmic permeases comprises two hydrophobic proteins which have been hypothesized to be integral membrane-spaninning proteins. We have investigated the topological organization of the hydrophobic components of the Salmonella typhimurium histidine permease, HisQ and HisM. Both proteins are digested by trypsin and proteinase K when either inside-out or right-side-out membrane vesicles are used. Therefore, these proteins are exposed to both surfaces of the membrane. Digestion with carboxypeptidase and binding studies with antibodies directed against the carboxyl terminus of HisQ and HisM have localized their carboxyl termini to the inside surface of the cytoplasmic membrane. Aminopeptidase digestion suggests periplasmic localization of their amino termini. Alkaline phosphatase fusions to HisQ and HisM indicate the existence of five spanners in both proteins. The periodicity and orientation of spanners and loops in HisQ and HisM match those of the five carboxyl-terminal spanners of MalF, the only other hydrophobic component of the periplasmic permeases for which topological information is available. An alignment of the sequences of all known hydrophobic components of periplasmic permeases is presented which indicates clear conservation of secondary structure and some conservation of primary sequence. The structural conservation of the components is discussed, and a role for a hydrophilic loop containing a conserved sequence (the EAA loop) is proposed.  相似文献   

18.
K Ihara  Y Mukohata 《FEBS letters》1988,240(1-2):148-152
Proteoliposomes were prepared by sonication of phospholipids and blue membranes (cation-free purple membranes carrying little activity of light-driven proton pumping) in an acidic medium of very low ionic strength. The majority of the bacteriorhodopsin population in these proteoliposomes was in the right-side-out (as in living cells) orientation as judged from the resultant polypeptides after papain digestion. By raising the pH of sonication, the population of right-side-out oriented bacteriorhodopsin decreased, and consequently that of the inversely oriented one increased. In KCl and NaCl up to certain concentrations or in choline chloride even at high concentrations, in the light, the proteoliposomes with right-side-out bacteriorhodopsin did not pump protons, whereas those with inversely oriented bacteriorhodopsin did. The former began to pump only after cations were likely incorporated/permeated into the proteoliposome and reached the carboxyl terminal (cytosol) side of bacteriorhodopsin/purple membrane.  相似文献   

19.
1. Impermeable inside-out and right-side-out vesicles were prepared from membranes of human erythrocytes. During preparation of each kind of impermeable vesicle, permeable vesicles were also obtained. 2. Incubation of vesicles with [gamma-32P]ATP at 37 degrees C for periods of up to 1 hr did not change the topography or the permeability of the vesicles. 3. Vesicles incorporated labeled phosphate from [gamma-32P]ATP into both diphosphoinositide and triphosphoinositide, but impermeable inside-out vesicles incorporated significantly more nuclide than did right-side-out vesicles. 4. Permeable vesicles derived during the preparation of inside-out vesicles were as active as impermeable inside-out vesicles in the incorporation of labeled phosphate into the polyphosphoinositides. However, permeable vesicles derived during the preparation of right-side out vesicles were not as active. 5. Impermeable right-side-out vesicles, treated with 0.01 percent saponin, incorporated labeled phosphate into the polyphosphoinositides at a level comparable to that of impermeable inside-out vesicles. 6. These data show that the enzymes involved in metabolism of diphosphoinositide and triphosphoinositide are located on the cytoplasmic surface of the erythrocyte membrane.  相似文献   

20.
Evidence is presented in this report for the presence of two sets of dithiols associated with proline transport activity in Escherichia coli. One set is located at the outer surface, the other at the inner surface of the cytoplasmic membrane. Treatment of right-side-out membrane vesicles from E. coli ML 308-225 with the membrane-impermeable oxidant ferricyanide resulted in inhibition of L-proline uptake without having significant effect on the magnitude of the delta approximately mu H+. Subsequent addition of reducing agents restored proline transport activity. The membrane-impermeable SH-reagent glutathione hexane maleimide inhibited proline transport in right-side-out membrane vesicles irreversibly. Pretreatment of the vesicles with ferricyanide protected the carrier against inactivation by glutathione hexane maleimide. Electron transfer in the respiratory chain of right-side-out vesicles led to the generation of a delta approximately mu H+, interior negative and alkaline, and the conversion of a disulphide to a dithiol in the proline carrier as is shown by the increased inhibition of proline transport by the membrane impermeable dithiol reagent 4-(2-arsonophenyl)azo-3-hydroxy-2,7-naphthalene disulphonic acid (thorin). The inhibition exerted by thorin was completely reversed by dithiothreitol. Pretreatment of the vesicles with thorin protected against glutathione hexane maleimide inhibition, indicating that both reagents react with the same group. Treatment of inside-out membrane vesicles with ferricyanide inactivated the proline transport system reversibly. The oxidizing effect of ferricyanide in inside-out vesicles resulted in protection against inhibition by glutathione hexane maleimide. Imposition in these vesicles of a delta approximately mu H+, interior positive and acid, also protected the proline carrier against glutathione hexane maleimide inactivation, indicating that a dithiol is converted to a disulphide upon energization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号