首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

2.
Cell-free particles from Pseudomonas rubescens have been shown to reduce hydroxocobalamin to vitamin B(12r). The particles are unable to reduce the B(12r) to B(12s). The reduction of hydroxocobalamin is dependent upon reduced nicotinamide adenine dinucleotide and is stimulated by flavin adenine dinucleotide. Cobinamide and diaquocobinamide were reduced at 25 and 10%, respectively, of the rate of hydroxocobalamin. Cyanocobalamin, coenzyme B(12), pseudovitamin B(12), and diaquopseudocobalamin were not reduced. Reduced nicotinamide adenine dinucleotide phosphate and flavin mononucleotide were not active. Diaphorase and xanthine oxidase activity were not present in the particulate fraction.  相似文献   

3.
The use of cinnamyl nitroblue tetrazolium chloride (DS-NBT) in dehydrogenase experiments (lactic dehydrogenase, succinic dehydrogenase, nicotinamide adenine dinucleotide diaphorase) and 3,3'-diaminobenzidine tetrahydrochloride (DAB) in cytochrome oxidase experiments indicated that mitochondrial oxidoreduction reactions from nicotinamide adenine dinucleotide to cytochrome oxidase are located on the inner mitochondrial membrane in the outer compartment and the intracristate spaces. These reactions behave according to the chemiosmotic hypothesis. The cochlear hair cell mitochondria are cytochemically indistinguishable from free liver mitochondria. The heterogeneous mitochondrial staining pattern is related to the osmolarity of the incubation media, solubility of the enzymes and pH of the medium, but not to the fixation method.  相似文献   

4.
A microorganism capable of degrading DL-mandelic acid was isolated from sewage sediment of enrichment culture and was identified as Pseudomonas convexa. It was found to metabolize mandelic acid by a new pathway involving 4-hydroxymandelic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid as aromatic intermediates. All the enzymes of the pathway were demonstrated in cell-free extracts. L-Mandelate-4-hydroxylase, a soluble enzyme, requires tetrahydropteridine, nicotinamide adenine dinucleotide phosphate, reduced form, and Fe2+ for its activity. The next enzyme, L-4-hydroxymandelate oxidase (decarboxylating), a particulate enzyme, requires flavine adenine dinucleotide and Mn2+ for its activity. A nicotinamide adenine dinucleotide-dependent, as well as a nicotinamide adenine dinucleotide phosphate-dependent, benzaldehyde dehydrogenase has been resolved and partially purified.  相似文献   

5.
Mitochondria of the yeastlike fungus Moniliella tomentosa oxidize reduced nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide phosphate, succinate, isocitrate, and lactate. These oxidations are completely inhibited by cyanide or antimycin A in mitochondria isolated from cells grown in the standard medium. On the other hand, the oxidation of all substrates, except lactate, is almost completely insensitive to cyanide or antimycin A in mitochondria from cells grown in the presence of ethidium bromide. In this instance, the oxidation is mainly mediated by an alternate oxidase which can be blocked by salicyl hydroxamic acid. The alternate oxidase can be specifically stimulated by adenosine 5'-monophosphate and this provides a new method for the characterization of the alternate oxidase in mitochondria of M. tomentosa.  相似文献   

6.
Paracoccus denitrificans was grown aerobically in chemostat culture in the presence of rotenone. After 6 to 10 generation times, cells showed an oxygen uptake which was completely rotenone-insensitive after removal of rotenone by washing with bovine serum albumin containing medium.The H+/O ratio of these cells for endogenous substrates decreased from about 7.50 to 3.95. The latter ratio was similar to the value obtained for starved cells oxidizing exogenous succinate, indicating that site I phosphorylation was absent in these rotenone-insensitive cells.Membrane particles prepared from these cells showed an 80% decrease in activity of reduced nicotinamide adenine dinucleotide oxidase and reduced nicotinamide adenine dinucleotide-ferricyanide oxidoreductase, while also the kinetic behaviour of the reduced nicotinamide adenine dinucleotide dehydrogenase in the reduced nicotinamide adenine dinucleotide-ferricyanide oxidoreductase assay was changed. Moreover the reduced nicotinamide adenine dinucleotide oxidase activity was practically rotenone-insensitive.Electron paramagnetic resonance spectroscopy on membrane particles from rotenone-insensitive cells at 15 K revealed that the resonance lines atg z 2.05 andg y g x 1.92 arising from iron-sulfur center 2 were undetectable. The intensities of the other electron paramagnetic resonance signals originating from reduced nicotinamide adenine dinucleotide dehydrogenase linked iron-sulfur centers were only slightly diminished.These observations confirm our previous suggestion that site I phosphorylation, rotenone sensitivity and the presence of iron-sulfur center 2 are correlated.Abbreviations EPR electron paramagnetic resonance - BSA bovine serum albumin - CCCP carbonylcyanide m-chlorophenylhydrazone - NAD nicotinamide adenine dinucleotide - NADP nicotinamide adenine dinucleotide phosphate - ATP adenosine triphosphate  相似文献   

7.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

8.
Extraction with pentane virtually abolished reduced nicotinamide adenine dinucleotide oxidase activity in small particles from Azotobacter vinelandii, but activity was largely restored by added ubiquinone.  相似文献   

9.
Respiratory mutants of the facultative photosynthetic bacterium Rhodopseudomonas capsulata were used to investigate the mechanism of (reversible) inhibition of bacteriochlorophyll (BChl) synthesis by molecular oxygen. Although mutant strain M5 lacks cytochrome oxidase activity, it closely resembles the parental wild-type strain in respect to the effect of O(2) on BChl formation. This observation does not support an earlier hypothesis that O(2) regulates BChl synthesis through an effect on the redox state of a component of the respiratory electron transport system. Mutant strain M2 shows normal cytochrome oxidase activity, but lacks both reduced nicotinamide adenine dinucleotide and succinate dehydrogenase activities; relative to the parental strain, BChl synthesis in M2 is more sensitive to O(2) inhibition. The foregoing and results of related experiments can be accounted for by a revised interpretation of the O(2) effect, which proposes that O(2) directly inactivates a "factor" necessary for BChl formation and that, at relatively low O(2) tension, the inactivation can be reversed by a flow of electrons (derived from reduced nicotinamide adenine dinucleotide and succinate) diverted from a portion of the electron transport system delimited by the mutational blocks in M2 and M5.  相似文献   

10.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

11.
Soluble reduced nicotinamide adenine dinucleotide oxidase activity in extracts of Bacillus subtilis spores was stimulated by the addition of not only flavine mononucleotide (FMN) or flavine adenine dinucleotide (FAD) but also alpha-alpha'-dipyridyl or o-phenanthroline. These chelating agents showed stronger effect on the enzyme from spores than on that from vegetative cells. Activity stimulated by alpha-alpha'-dipyridyl or o-phenanthroline was inhibited by atabrine or dipicolinic acid, whereas FMN or FAD stimulation was inhibited only by atabrine.  相似文献   

12.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

13.
The formation of hydrogen peroxide by group N streptococci was found to occur through the action of a reduced nicotinamide adenine dinucleotide (NADH) oxidase which catalyzed the oxidation of NADH by molecular oxygen. The enzyme was activated by flavine adenine dinucleotide. Whereas some of the hydrogen peroxide formed was removed through the action of an NADH peroxidase, sufficient accumulated in media to inhibit the growth, respiration, and viability of these organisms. The amount of hydrogen peroxide which accumulated varied among strains, and this variation could be related to differences in the properties of the NADH oxidase present.  相似文献   

14.
The application of a recently published technique to localize reduced nicotinamide adenine dinucleotide oxidase activity is described in glutaraldehyde-fixed Candida albicans. The reaction product appears as a finely granular precipitate on the mitochondrial cristae and on the central vacuolar membrane, and, if present, on the vacuolar contents. Fixation should be kept to a minimum and prolonged incubation times up to 2 hr are necessary to show these reactive sites. The reaction appears to be strongly substrate-dependent and not affected by cyanide. Exposure of C. albicans cells to the antimycotic miconazole resulted in a strong increase in reduced nicotinamide, adenine dinucleotide and oxidase activity. The hypothesis is put forward that this enzyme, together with peroxidative and catalatic enzymes, may be implicated in the mechanism by which miconazole exerts its lethal effect on C. albicans.  相似文献   

15.
Readily synthesized nicotinamide adenine dinucleotide (NAD(+)) analogues have been used to investigate aspects of the cyclization of NAD(+) to cyclic adenosine 5'-O-diphosphate ribose (cADPR) catalyzed by the enzyme adenosine 5'-O-diphosphate (ADP) ribosyl cyclase and to produce the first potent inhibitors of this enzyme. In all cases, inhibition of Aplysia californica cyclase by various substrate analogues was found to be competitive while inhibition by nicotinamide exhibited mixed-behavior characteristics. Nicotinamide hypoxanthine dinucleotide (NHD(+)), nicotinamide guanine dinucleotide (NGD(+)), C1'-m-benzamide adenine dinucleotide (Bp(2)A), and C1'-m-benzamide nicotinamide dinucleotide (Bp(2)N) were found to be nanomolar potency inhibitors with inhibition constants of 70, 143, 189, and 201 nM, respectively. However, NHD(+) and NGD(+) are also known substrates and are slowly converted to cyclic products, thus preventing their further use as inhibitors. The symmetrical bis-nucleotides, bis-adenine dinucleotide (Ap(2)A), bis-hypoxanthine dinucleotide (Hp(2)H), and bis-nicotinamide dinucleotide (Np(2)N), exhibited micromolar competitive inhibition, with Ap(2)A displaying the greatest affinity for the enzyme. 2',3'-Di-O-acetyl nicotinamide adenine dinucleotide (AcONAD(+)) was not a substrate for the A. californica cyclase but also displayed some inhibition at a micromolar level. Finally, inhibition of the cyclase by adenosine 5'-O-diphosphate ribose (ADPR) and inosine 5'-O-diphosphate ribose (IDPR) was observed at millimolar concentration. The nicotinamide aromatic ring appears to be the optimal motif required for enzymatic recognition, while modifications of the 2'- and 3'-hydroxyls of the nicotinamide ribose seem to hamper binding to the enzyme. Stabilizing enzyme/inhibitor interactions and the inability of the enzyme to release unprocessed material are both considered to explain nanomolar inhibition. Recognition of inhibitors by other ADP ribosyl cyclases has also been investigated, and this study now provides the first potent nonhydrolyzable sea urchin ADP ribosyl cyclase and cADPR hydrolase inhibitor Bp(2)A, with inhibition observed at the micromolar and nanomolar level, respectively. The benzamide derivatives did not inhibit CD38 cyclase or hydrolase activity when NGD(+) was used as substrate. These results emphasize the difference between CD38 and other enzymes in which the cADPR cyclase activity predominates.  相似文献   

16.
Cell extracts of Polyporus circinatus grown on lactate catalyze the reduction of 2,6-dichlorophenolindophenol by l-lactate without the participation of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate. The enzyme has been purified 78-fold and was homogenous by disc gel electrophoresis. The optimal pH was found to be 6.7. The Michaelis constant for l-lactate was 5.9 x 10(-4) M and the oxalate inhibition constant was 1.5 x 10(-4) M. The nature of the prosthetic group is discussed.  相似文献   

17.
The enzyme utilizing metaphosphate for nicotinamide adenine dinucleotide phosphorylation was purified 500-fold from B. ammoniagenes and its properties were studied. The isolated enzyme appeared homogeneous on disc gel electrophoresis; its molecular weight was determined to be 9.0 × 104 by gel filtration. This enzyme specifically phosphorylated nicotinamide adenine dinucleotide at the optimum pH at 6.0. Of phosphoryl donors tested, metaphosphate was most effective for the reaction, and adenosine-5′-triphosphate was less effective. The activity was inhibited by adenosine-5′-monophosphate, adenosine-5′-diphosphate or reduced pyridine nucleotides. The enzyme did not exhibit catalytic activity in the absence of a divalent cation. We concluded that the enzyme phosphorylating nicotinamide adenine dinucleotide in the presence of metaphosphate is distinct from adenosine-5′-triphosphate-dependent nicotinamide adenine dinucleotide kinase, and tentatively designated it metaphosphate-dependent nicotinamide adenine dinucleotide kinase.  相似文献   

18.
Synthesis of l-carnitine has been carried out by the enzymatic reduction of the carbonyl group of the achiral precursor 3-dehydrocarnitine with the oxidized nicotinamide adenine dinucleotide-linked carnitine dehydrogenase. Various enzymatic or chemical systems have been tested to regenerate the reduced nicotinamide adenine dinucleotide oxidized in the reduction of 3-dehydrocarnitine. Because of the instability of this compound in aqueous solutions, it was added by continuous feeding as a rate-limiting constituent in the reaction mixture. Under these conditions, conversion yields of 95% were achieved with the glucose plus glucose dehydrogenase system. A total number of 530 reduced nicotinamide adenine dinucleotide recyclings was obtained with this system for a production of 45 g of l-carnitine per liter. The stabilities of the oxidized nicotinamide adenine dinucleotide and the reduced nicotinamide adenine dinucleotide have been determined at various pH values. In view of these results, several possible strategies for enzymatic syntheses with the reduced nicotinamide adenine dinucleotide as a regenerable coenzyme are discussed.  相似文献   

19.
Exogenous nicotinamide adenine dinucleotide is not utilized per se by Escherichia coli, but is converted to nicotinamide and thence to nicotinamide adenine dinucleotide via nicotinate.  相似文献   

20.
Species of coryneform bacteria (Corynebacterium glutamicum, Brevibacterium flavum, and B. ammoniagenes) utilize pretyrosine [beta-(1-carboxy-4-hydroxy-2,5-cyclohexadien-1-yl) alanine] as an intermediate in L-tyrosine biosynthesis. Pretyrosine is formed from prephenate via the activity of at least one species of aromatic aminotransferase which is significantly greater with prephenate as substrate than with either phenylpyruvate or 4-hydroxyphenylpyruvate. Pretyrosine dehydrogenase, capable of converting pretyrosine to L-tyrosine, has been partially purified from all three species. Each of the three pretyrosine dehydrogenases is catalytically active with either nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as cofactors. The Km values for nicotinamide adenine dinucleotide phosphate in C. glutamicum and B. flavum are 55 microM and 14.2 microM, respectively, and corresponding Km values for nicotinamide adenine dinucleotide are 350 microM and 625 microM, respectively. The molecular weights of pretyrosine dehydrogenase in C. glutamicum and in B. flavum are both about 158,000, compared with 68,000 moleculr weitht in B. ammoniagenes. In all three species the enzyme is not feedback inhibited by L-tyrosine. Results obtained with various auxotropic mutants, which were used to manipulate internal concentrations of L-tyrosine, suggest that pretyrosine dehydrogenase is expressed constitutively. Pretyrosine dehydrogenase is quite sensitive to p-hydroxymercuribenzoic acid, complete inhibition being achieved at 10 to 25 microM concentrations. This inhibition is readily reversed by thiol reagents such as 2-mercaptoethanol. Coryneform organisms, like species of blue-green bacteria, appear to lack the 4-hydroxyphenylpyruvate pa thway of L-tyrosine synthesis altogether. The loss of pretyrosine dehydrogenase in extracts prepared from a tyrosine auxotroph affirms the exclusive role of pretyrosine dehydrogenase in L-tyrosine biosynthesis. Other reports in the literature, in which the presence in these organisms of prephenate dehydrogenase is described, appear to be erroneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号