首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? Premise of the study: Intercellular spaces along ray parenchyma (ISRP) are common in many conifer xylems, but their function is uncertain because the in-situ structural network among ISRP, ray parenchyma, and tracheids has not been evaluated. Analysis of water distribution in ISRP from sapwood to heartwood is needed to elucidate the function of ISRP in sapwood, intermediate wood, and heartwood. ? Methods: We used cryo-scanning electron microscopy, x-ray photography, and water content measurement in xylem to analyze the presence of liquids in ISRP, ray parenchyma, and tracheids from sapwood to heartwood in Cryptomeria japonica (Cupressaceae). ? Key results: In sapwood, almost all ISRP were empty. "Cingulate-cavitated regions", which lose water along the tangential direction within one annual ring, formed in the earlywood tracheids, and their frequency increased toward the inner annual rings, whereas ray parenchyma cells were alive and not involved in the partial cavitation. In intermediate wood, almost all ISRP and earlywood tracheids and many of the ray cells were empty, and only some latewood tracheids retained liquid in their lumina. The ISRP were connected with tracheids via gas-filled ray parenchyma cells. ? Conclusions: The ISRP work as a pathway of gas for aspiration of ray parenchyma cells in sapwood. On the other hand, the occurrence of a gas network between ISRP, ray parenchyma, and tracheids facilitates cavitation of tracheids, resulting in the generation of low-moisture, intermediate wood.  相似文献   

2.
The mechanism of heartwood formation in Cryptomeria japonica D. Don has long been studied since heartwood formation is a fundamental physiological feature of trees. In this study, the water distribution in the xylem of C. japonica was investigated at the cellular level to reveal the role of water distribution in the xylem during heartwood formation. Samples were taken from different heights of each trunk, in which the phases of heartwood formation differed. These were designated as SIH, which consisted of sapwood, intermediate wood, and heartwood; SI, which consisted of sapwood and intermediate wood but no heartwood; and S-all, which consisted entirely of sapwood. Cryo-scanning electron microscopic observations of the heartwood-formed (SIH) and non-heartwood-formed (SI and S-all) xylem revealed different patterns of water distribution changes in tracheids between the latewood and earlywood. In the latewood, almost all tracheids were filled with water in all areas from the sapwood to the heartwood (98–100% of tracheids had water in their lumina). In the earlywood, however, the water distribution differed between the sapwood (95–99%), intermediate wood (7–12%), and heartwood (4–100%). Many of the tracheids in the xylem, where the sapwood changed to intermediate wood lost water. In the heartwood, some tracheids remained empty, while others were refilled with water. These results suggest that the water distribution changes in individual tracheids are closely related to heartwood formation. Water loss from tracheids may be an important factor inducing heartwood formation in the xylem of C. japonica.  相似文献   

3.
Elucidation of the mechanisms involved in long-distance water transport in trees requires knowledge of the water distribution within the sapwood and heartwood of the stem as well as of the earlywood and latewood of an annual ring. X-ray computed tomography is a powerful tool for measuring density distributions and water contents in the xylem with high spatial resolution. Ten- to 20-year-old spruce (Picea abies L. KARST.) and oak (Quercus robur) trees grown in the field were used throughout the experiments. Stem and branch discs were collected from different tree heights, immediately deep frozen, and used for the tomographic determinations of spatial water distributions. Results are presented for single-tree individuals, demonstrating heartwood and sapwood distribution throughout their entire length as well as the water relations in single annual rings of both types of wood. Tree rings of the sapwood show steep water gradients from latewood to earlywood, whereas those of the heartwood reflect water deficiency in both species. Although only the latest two annual rings of the ringporous species are generally assumed to transport water, we found similar amounts of water and no tyloses in all rings of the oak sapwood, which indicates that at least water storage is important in the whole sapwood.  相似文献   

4.
BACKGROUND AND AIMS: The differentiation of terminal latewood tracheids of silver fir (Abies alba) trees grown in Slovenia was investigated in autumn/winter 2001/2002. METHODS: The experimental trees were divided into three groups: one with narrow annual rings, width less than 1 mm; one with annual ring widths between 1 and 4 mm; and one group with broad rings larger than 4 mm. The differentiation of terminal latewood tracheids was investigated by light-, electron- and UV-microscopy in tissues sampled in October and November 2001 and March 2002. KEY RESULTS: In the middle of October, cambial divisions did not occur any more in any of the trees. In trees with narrow annual rings, cell wall deposition as well as lignification were completed in terminal latewood tracheids at this date, whereas in trees with annual ring widths of more than 1 mm these processes still continued. Electron microscopy as well as UV microscopy revealed an unlignified inner S(2) layer and the absence of S(3) and warty layers. With increasing distance from the cambium, wall formation and lignification gradually appeared to be completed. Samples of all trees taken in the middle of November only contained differentiated terminal latewood tracheids. At the structural and lignin topochemical level, November and March samples showed completed differentiation of walls of terminal latewood tracheids. CONCLUSIONS: In trees with broader annual rings, the final steps of differentiation of the youngest latewood tracheids near the cambium still continued during autumn, but were finished prior to winter. It was concluded from structural observations that duration of cambial activity is longer in trees with broad annual rings than in trees with narrow rings.  相似文献   

5.

Background and Aims

Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem.

Methods

The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy.

Key Results

Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water.

Conclusions

TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells and/or water in the heartwood-forming xylem.  相似文献   

6.
For an examination of the progression of cavitation in large-diameter earlywood vessels of a deciduous ring-porous tree, potted saplings of Fraxinus mandshurica var japonica Maxim. were frozen and then thawed. The changes in the amount and distribution of water in the lumina of the current year's earlywood vessels during the course of the freezing and thawing were visualized by cryo-scanning electron microscopy. When samples were frozen, most of the current year's earlywood vessels were filled with water. After the subsequent thawing, the percentage of cavitated current-year earlywood vessels gradually increased with time. All of the current year's earlywood vessels were cavitated within 24 h, and only limited amounts of water remained in the lumina of earlywood vessels. Similar cavitation of earlywood vessels was observed after thawing of frozen, excised stem pieces. In contrast, many vessels of the current year's latewood retained water in the lumina during freezing and thawing. These observations indicate that the cavitation of the current year's earlywood vessels is not produced during freezing but progresses during rewarming after freezing in F. mandshurica var japonica.  相似文献   

7.
The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.  相似文献   

8.
A vesselless fossil wood was discovered in the Miocene Yanagida Formation in the Noto Peninsula, central Japan. This fossil has distinct growth rings with gradual transition from the early- to the latewood ; tracheids, which are called 'usual traeheids' here, constitute the ground mass of the wood and have typical scalariform bordered pits on radial walls in the earlywood and circular sparse pits on those in the latewood ; rays are 1\2-4 cells wide and heterogeneous with low to high uniseriate wings; axial parenchyma strands are scattered in the latewood. This wood has a peculiar feature; sporadic radial files of broad tracheids whose tangential walls have crowded alternate bordered pits. The radial walls have crowded half-bordered pits to ray cells, but no pits to the usual tracheids. Among all of the extant and extinct angiosperms and gymnosperms, these unusual tracheids occur only in Tetracentron. From these features, we refer the fossil to the extant genus Tetracentron, and name it T. japonoxylum. A revision of homoxylic woods is made for comparision with the present fossil. Tetracentron japonoxylum is the only fossil wood of Tetracentron.  相似文献   

9.
The results of comparative analysis of tree-ring anatomical structure in the trunk of Larix gmelinii (Rupr.) Rupr. growing in the forest-tundra ecotone in the north of Middle Siberia in contrasting hydrothermal conditions of permafrost soils are discussed. It is found that the best soil hydrothermal conditions affected the formation of relatively large tracheids in earlywood and latewood during the whole period investigated. Current climate warming has caused a positive trend in annual changes in the cellular characteristics in trees growing in relatively favorable soil conditions and has not caused observable changes in trees growing in adverse conditions. The wood anatomy structure of the water–conducting (earlywood) zone in the tree ring in favorable conditions is determined by the weather of late May and June, and in adverse conditions it is determined by the weather in late April and May.  相似文献   

10.
The precise demarcation between earlywood and latewood is important for the detailed analysis of intra-annual tree ring features. Different techniques based on visual assessment, wood anatomy analysis and X-ray densitometry have been developed and are currently used for this purpose. Depending on the chosen method, tree species and environmental conditions, the results can significantly vary. Thus, it is important to determine the technique optimal for a particular research. Here, we investigated Norway spruce (Picea abies) tree rings to examine the agreement among the following demarcation methods: (1) direct visual assessment, (2) Mork’s index (anatomical definition of the transition from earlywood to latewood based on cell wall-lumen ratio) and (3) fixed and floating density thresholds applied to intra-ring density profiles. The aim was to modify both the Mork’s criterion and density thresholds on the basis of reference values given by visual identification of earlywood/latewood transition. A total of 231 tree rings were analysed by all methods. Our results showed that the usage of floating threshold (defined for each ring separately based on density profiles) is more reliable in comparison with fixed threshold (the same threshold value used for all tree rings and samples). Statistical analysis revealed the best correspondence between visual identification of earlywood/latewood transition and demarcation based on the standard Mork’s index and the floating density threshold derived as 80 % of maximum latewood density. In terms of Mork’s index calibration, the results showed that to determine latewood cells in Norway spruce trees growing in temperate conditions, it is sufficient to use an index value equal to 0.83. The results are applicable for the studied spruce population growing in a temperate climate. The methodology itself, however, is universal and can help to calibrate criteria for earlywood-latewood demarcation under specific conditions.  相似文献   

11.
Hydraulic conductivity through the outermost growth ring of Ulmus americana was quantified to determine the significance of this single growth increment to fluid flow in xylem of a ring-porous tree. Gravity flow rates through trunks deprived of the outermost growth ring dropped to 8% of the rate achieved in control trunks whose cross section was intact. However, colored dye, fed through stem segments, appeared in up to 4-yr old wood, corroborating earlier reports that fluid flows through more than just the outermost growth ring of ring-porous trees. Finally, the pathway of flow through older rings was shown to consist of narrow latewood elements while the wider and more hydraulically significant earlywood vessels came into play only in the outermost growth ring of U. americana. These data indicate that the outermost growth ring of Ulmus is responsible for over 90% of xylem transport in this ring-porous tree, because wide earlywood vessels function only for one growth season.  相似文献   

12.
马尾松正常木与应压木的比较解剖   总被引:6,自引:0,他引:6  
用光学显微镜和扫描电镜观察比较了马尾松(Pinus massoniana)正常木与应压木的结构差异。研究结果表明:马尾松应压木从早材到晚材呈缓变,管胞在横切面上除生长轮分界处的两侧外均为圆形,管胞之间具明显的胞间隙;管胞的次生壁仅有 S_1和 S_2两层;次生壁上螺纹间隙和螺纹裂隙都很明显,并与 S_2层微纤丝平行。此外,还初步讨论了应压木形成的可能机理。  相似文献   

13.
Temperature, water availability and photoperiod are the primary drivers of tree phenological processes. However, there is lack of information how the spring temperature and summer drought affect phenology of both cambium and needles. We evaluated the interplay between xylem and needle development of mature Scots pine trees in three consecutive years differing in the spring temperatures and onset and duration of summer drought. Cambial activity began on the day of a year (DOY) 83–87, while the bud break occurred on DOY 113–119, when also the secondary cell wall of tracheids started its formation. While the timing of bud break correlated with the sum of effective temperatures, the beginning of cambial zone activity did not. The needles were fully unfolded around DOY 170, which corresponded to the transition between earlywood and latewood tracheids. Summer drought did not affect needle development, but it changed the rate of production and morphology of latewood tracheids. Latewood tracheids from the year 2015 when the drought was longest (i.e. until the second half of August in 2015 compared to the duration from June until the middle of July in the two other years) were 32% narrower and they had 34% thinner cell walls than in 2014 and 2016. The improvement of tree water status in July resulted in the formation of intra-annual density fluctuations (IADF). The interplay between needle and cambium phenology provided an insight into how the tree allocates the resources with varying temperature and soil water availability.  相似文献   

14.
树木年轮 (简称树轮 ) 气候学是监测与重建全球气候变化的重要方法之一。针叶树树轮的生长能反馈出气温的变化, 在高纬度地带尤为明显。该文分析了生长在我国最北部的兴安落叶松 (Larixgmelinii) 与樟子松 (Pinussylvestrisvar.mongolica) 的树轮密度和宽度的特性。落叶松最大密度、晚材平均密度、早晚材宽度和轮宽都远高于樟子松。樟子松的所有密度变量的样本方差都明显高于兴安落叶松, 宽度变量的样本方差却明显低于兴安落叶松。两树种密度变量的差值年表显著相关, 宽度变量之间没有显著相关关系。落叶松与樟子松的晚材密度的形成受 7、8月的最高温控制。另外, 樟子松的晚材还与生长季节的长短相关。落叶松的年轮宽度对生长季节开始前的温度敏感, 而樟子松的轮宽对气候变量没有很好的响应。结果表明, 落叶松与樟子松的树轮最大密度都与生长季后期的温度显著相关, 两树种的树轮信息对气候变化的重建有很大的潜力。  相似文献   

15.
Herbivores can alter plant physiology through the induction of abnormal wood formation. Feeding by some insects induces the formation of false rings, a band of thick-walled latewood cells within the earlywood portion of the tree ring that reduces water transport. Hemlock woolly adelgid (Adelges tsugae Annand) and elongate hemlock scale (Fiorinia externa Ferris) are invasive insects that both feed on eastern hemlock [Tsuga canadensis (L.) Carrière]. Adelges tsugae has a greater effect on tree health than F. externa, but the mechanism underlying their differential effect is unknown. We explored the effects of these herbivores by assessing growth ring formation in branches of trees that had been experimentally infested for 4 yr with A. tsugae, F. externa, or neither insect. We measured false ring density, ring growth, and earlywood: latewood ratios in the two most recently deposited growth rings. Branches from A. tsugae-infested trees had 30% more false rings than branches from F. externa-infested trees and 50% more than branches from uninfested trees. In contrast, branches from F. externa-infested trees and control trees did not differ in false ring formation. Radial growth and earlywood: latewood ratios did not differ among treatments. Our results show that two invasive herbivores with piercing-sucking mouth parts have differing effects on false ring formation in eastern hemlock. These false rings may be the product of a systemic plant hypersensitive response to feeding by A. tsugae on hemlock stems. If false rings are responsible for or symptomatic of hemlock water stress, this may provide a potential explanation for the relatively large effect of A. tsugae infestations on tree health.  相似文献   

16.
Conifer trees possess a typical anatomical tree‐ring structure characterized by a transition from large and thin‐walled earlywood tracheids to narrow and thick‐walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall‐thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree‐ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.  相似文献   

17.
A dye injection method was used to elucidate the xylem water-conducting pathways of 34 broadleaved evergreen trees growing in southern Japan: two semi-ring-porous, 26 diffuse-porous, five radial-porous and one non-vessel species. The large earlywood vessels in semi-ring-porous species have a water transport function in only the outermost annual ring, as in deciduous ring-porous species. On the other hand, the small vessels in semi-ring-porous species maintain the water transport function in many outer annual rings. For the other xylem-type species, the many vessels in many outer annual rings have a water transport function. In diffuse-porous species, we categorized the water-conducting pattern within the annual rings into two types: d1 type, where water travels through vessels in the whole region; and d2 type, where water travels mainly through the earlywood vessels. The pattern in radial-porous species is similar to that in the d1 type; the pattern in non-vessels species is similar to that in the d2 type. The vessel diameter in radial-porous species is similar to that of the earlywood vessels of semi-ring-porous species. These results suggest that the conduit diameter size is only one of many factors determining the water-conducting pathways of broadleaved evergreen species.  相似文献   

18.
Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >−0.4 MPa, a significant fraction of the water content of sapwood is held by `capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about −0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman.

We also report an improved method for the measurement of the `intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective `listening distance' for most AEs was less than 5 to 10 mm.

  相似文献   

19.
《Dendrochronologia》2014,32(4):303-312
Mountain conifers in the Great Basin of North America have provided some of the longest, continuous, and annually resolved paleoclimate records. Climate-growth relationships at the cellular level, which help understand wood formation processes that underlie dendroclimatic reconstructions, are at present largely unexplored in the Great Basin. We analyzed 42 trees located in the Snake Range (eastern Nevada, USA) at three sites along an elevation gradient. Sampled species included white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii), limber pine (Pinus flexilis), bristlecone pine (Pinus longaeva), and Engelmann spruce (Picea engelmannii). Wood anatomical features were quantified for two consecutive years, 2011 and 2012. Lumen area, cell wall thickness, lumen diameter, and wall-to-cell ratio were measured for the total ring as well as for earlywood and latewood. Mean standardized tracheidograms highlighted differences between 2011 and 2012, in particular concerning lumen area and wall-to-cell ratio. Most annual variation was due to earlywood, rather than latewood. Anatomical parameters of limber pine, the only species that could be tested at both the montane and subalpine sites, varied with elevation. Principal component analysis showed that the main axis of variability was related to dimensional parameters (e.g. lumen area), which reflected differences in water availability.  相似文献   

20.
Pedunculate oak (Quercus robur L.) is one of the widely used and dendrochronologically investigated species in Europe. Still, it is a problematical dating object if its outermost section is missing partly or totally. Thus, we need sapwood estimation of living trees. As sapwood amount varies geographically, numbers of sapwood rings have been published for different regions in Europe but no such estimation has been done for the Baltic States yet. Therefore, this paper deals with the estimation of pedunculate oak sapwood growing in the eastern Baltic region, i.e. in Finland, Estonia, Latvia, and Lithuania.In total, 668 oak core samples of living trees from 43 stands were investigated. Ring widths were measured and the number of sapwood rings was determined according to two criteria: difference of colour and absence of tyloses in earlywood vessels. The samples were divided into two sets, according to the tH-values between site chronologies and the major geobotanical sub-provinces. Thus, the nine Finnish and western Estonian sites were attributed to the western region and the 34 eastern Estonian, Latvian and Lithuanian sites to the eastern region.As the result of a statistical analysis, we explain that the number of oak sapwood rings ranges from 4.09 to 20.85 and 6.45 to 18.02 within 95% confidence limits in the western and eastern regions, respectively. For the three Baltic countries and southern Finland in general, we recommend to consider a sapwood estimate of 6.18–18.71 rings. Regarding earlier studies, the general European trend of decreasing sapwood ring number towards the east was confirmed. A geographical pattern of eastward decrease of the median sapwood ring number was noticed in the Baltics as well. The chronology based upon 668 samples of living oak trees from all sites covered the period of 1631–2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号