首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect ot Cu2+ and Ca2+ ions, on the ultraviolet differential (UVD) spectra of single-stranded poly I was studied and the coordination (Δεb) and conformation (Δεc) conponents of the spectra calculated The comparison of Δεb and the UVD spectrum of protonated IMP leads to the conclusion that N(7) ot inosine-5'-monophosphate (IMP) is a coordinating site tor Ca2+ and Cu2+ ions on the polymer bases. The binding ot Ca2+ and Cu2+ ions causes differently directed displacements of the four absorption bands of poly I, which are observed in the wavenumber range (50-34) × 103 cm−1 The calculation of concentration dependencies tor the association constants (K“) ot Ca2+ and Cu2+ ions binding to poly I bases shows that the binding is cooperative The K“ values for the poly I + Ca2+ complex are two orders of magnitude lower than those for the poly 1 + Cu2+ complex At low ion concentrations, binding to the poly I phosphates predominates and increases the degree of the polynucleotide helicity. At higher concentrations the spectra are mainly affected by the ion binding to bases, which results in melting of the helical parts of poly I At Ca2+ concentrations exceeding 10−3 M light-scattering aggregates are formed. The degree of monomer order in them is close to that observed in multistranded helices of poly I  相似文献   

2.
To characterize the specificity of ion binding to phospholipids in terms of headgroup structure, hydration and lyotropic phase behavior we studied 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of relative humidity (RH) at 25 degrees C in the presence and absence of Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cu2+ ions by means of infrared (IR) spectroscopy. All divalent cations and Li+ shift the gel-to-liquid crystalline phase transition towards bigger RH values indicating stabilization of the gel state. The observed shift correlates in a linearly fashion with the electrostatic solvation free energy for most of the ions in water that in turn, is inversely related to the ionic radius. This interesting result was interpreted in terms of the excess chemical potential of mixing of hydrated ions and lipids. Calcium, zinc and partially lithium, cause a positive deviation from the linear relationship. IR spectral analysis shows that the carbonyl groups become more accessible to the water in the presence of Mg2+, Ca2+, Sr2+ and Ba2+ probably because of their involvement into the hydration shell of the ions. In contrast, Be2+, Zn2+ and Cu2+ dehydrate the carbonyl groups at small and medium RH. The ability of the lipid to take up water is distinctly reduced in the presence of Zn2+ and, partially, of Cu2+ meaning that the headgroups have become less hydrophilic. The binding mode of Be2+ to lipid headgroups involves hydrolyzed water. Polarized IR spectra show that complex formation of the phosphate groups with divalent ions gives rise to conformational changes and immobilization of the headgroups. The results are discussed in terms of the lyotropic Hofmeister series and of fusogenic activity of the ionic species.  相似文献   

3.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

4.
Ultraviolet differential spectra of poly A we studied in the presence of Ca2+ ions with 10(-3)M Na+ in the solution. At concentrations lower than 10(-3)M Ca2+, the ions bind to phosphate groups of the single helical polymer, thus increasing its degree of helicity. At higher concentrations, the ions start binding to the bases of poly A, producing aggregates whose effective radius, as found with an electric microscope, is not more than 10(2) A. These particles stack to form aggregates of an order-of-magnitude higher size. The mutual orientation of bases in the poly A aggregates is of a high degree of order. The calculation of concentration dependences of Ca2+-poly A binding constants shows that this process is cooperative.  相似文献   

5.
The interaction of DNA with divalent metal ions: Ba2+, Mg2+, Mn2+, Ni2+, Cu2+ in solutions at different ionic strengths mu was investigated. The combination of following methods: flow birefringence, viscometry, UV-spectroscopy and circular dichroism made possible to follow the state of the secondary and tertiary structure of the DNA molecule during its interaction with ions. The presence of divalent ions in solution affects the hydrodynamic properties of DNA only at low mu. At high mu the difference in the action of mono- and divalent ions disappears. The persistence length of DNA does not change during the experiment. It is shown that the Mg2+ and Ba2+ ions interact only with phosphate groups of DNA but Mn2+, Ni2+, Cu2+ ions interact also with the nitrogen bases of the macromolecule.  相似文献   

6.
The interaction between the native DNA macromolecules and Ca2+, Mn2+, Cu2+ ions in solutions of low ionic strength (10(-3) M Na+) is studied using the methods of differential UV spectroscopy and CD spectroscopy. It is shown that the transition metal ions Mn2+ exercise binding to the nitrogen bases of DNA at concentrations approximately 5 x 10(-6) M and form chelates with guanine of N7-Me(2+)-O6 type. Only at high concentrations in solution (5 x 10(-3) M) do Ca2+ ions interact with the nitrogen bases of native DNA. In the process of binding to Ca2+ and Mn2+ the DNA conformation experiences some changes under which the secondary structure of the biopolymer is within the B-form family. The DNA transition to the new conformation is revealed by its binding to Cu2+ ions.  相似文献   

7.
Data are reported for the binding of Ni2+, Co2+, and Mg2+ to the B-form of double-stranded poly(dG-dC) at ionic strength conditions I = 0.001 M, 0.01 M, and 0.1 M. The apparent binding constants for Ni2+ and Co2+ are about the same and are 2- to 3-fold higher than those for Mg2+. Kinetic studies indicate that Mg2+ binds to the polynucleotide mainly (or solely) as a mobile cloud (electrostatically, outer-sphere), whereas the transition metal ions undergo site binding (inner-sphere coordination) with poly(dG-dC). The kinetic data suggest that an Ni2+ ion coordinates to more than one binding site at the polynucleotide, presumably to G-N7 and a phosphate group.

At low ionic strength conditions the addition of Ni2+ induces a B → Z conformational transition in poly(dG-dC). As demonstrated by UV absorption and CD spectroscopy, the transition occurs at I = 0.001 M already when 3 × 10−5 – 7 × 10−5 M of Ni2+ are added to 8 × 10−5 M (in monomeric units) of poly(dG-dC), and at I = 0.01 M between 2.5 × 10−4 and 4.5 × 10−4 M of Ni2+. Using murexide as an indicator of the concentration of free Ni2+ ions, the amount of Ni2+ which is bound to the polynucleotide could be determined. At I = 0.001 M it was established that the B → Z transition begins when 1 Ni2+ is bound coordinatively per four base pairs, and the transition is complete when 1 Ni2+ is bound coordinatively per three base pairs. It is this coordinated Ni2+ which induces the B → Z transition.  相似文献   


8.
The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.  相似文献   

9.
The effects of Mg2+ and Ni2+ ions on the absorption spectra of IMP, single-stranded poly I and three-stranded A2I in solutions with 0.1 M Na+ (pH 7) have been studied. In contrast to Mg2+ ions, the Ni2+ ions affect the absorption spectra of these polynucleotides and IMP. The concentration dependences of the intensity at the extrema in the differential UV spectra suggest that in the region of high Ni2+ concentrations ionic complexes with poly I and A2I are formed, which are characterized by the association constants K'I = 2000 M(-1) and K'A2I = 550 M(-1), respectively. The shape of the DUV spectra prompts the conclusion that these complexes are formed due to the inner-sphere interaction of Ni2+ ions with N7 of poly I and A2I presumably due to the outer-sphere Ni2+-O6 interaction. The formation of the complexes leads to destruction of A2I triplexes. The dependences of the melting temperature (T(m)) of A2I on Mg2+ and Ni2+ concentrations have been measured. The thermal stability is observed to increase at the ionic contents up to 0.01 M Mg2+ and only to 2x10(-4) M Ni2+. At higher contents of Ni2+ ions, T(m) lowers and the cooperativity of A2I melting decreases continuously. In all the cases the melting process is the A2I-->A+I+I (3-->1) transition. According to the "ligand" theory, these effects are generated by the energy-advantageous Ni2+ binding to single-stranded poly I (K'A2I < K'I) and by the greater number of binding sites which appears during the 3-->1 transition and is entropy-advantageous.  相似文献   

10.
Equilibria and kinetics of the interactions of Mg2+ and Ni2+ with poly(U), poly(C) and poly(I) have been investigated at 25 degrees C, an ionic strength of 0.1 M, and pH 7.0 or 6.0. Analogous studies involving poly(A) were reported earlier. All binding equilibria were studied by means of the (usually small) absorbance changes in the ultraviolet range. This technique yields apparent binding constants which are fairly large for the interaction of Ni2+ with poly(A) (K = 0.9 X 10(4) M-1) and poly(I) (K approximately equal to 2 X 10(4) M-1) but considerably lower for the corresponding Mg2+ systems, Mg2+-poly(A) (K = 2 X 10(3) M-1) and Mg2+-poly(I) (K = 280 M-1). Each of the two pyrimidine nucleotides binds both metal ions with about the same strength (K approximately equal to 65 M-1 for poly(U) and K near 600 M-1 for poly(C]. In the case of poly(C) the spectral changes deviate from those expected for a simple binding equilibrium. In addition, the binding of Ni2+ to the four polynucleotides was measured by using murexide as an indicator of the concentration of free Ni2+. The results obtained by this technique agree or are at least consistent with those derived from the ultraviolet spectra. Complications are encountered in the binding studies involving poly(I), particularly at higher metal ion concentrations, obviously due to the formation of aggregated poly(I) species. Kinetic studies of the binding processes were carried out by the temperature-jump relaxation technique. Measurable relaxation effects of time constants greater than 5 microseconds were observed only in the systems Ni2+-poly(A) and Ni2+-poly(I). Such not-too-fast reaction effects are expected for processes which include inner-sphere substitution steps at Mg2+ or Ni2+. The relaxation process in Ni2+-poly(I) is characterized by (at least) four time constants. Obviously, the complicated kinetics again include reactions of aggregated poly(I). The absence of detectable relaxation effects in all other systems (except Mg2+-poly(I), the kinetics of which was not investigated) indicates that inner-sphere coordination of the metal ions to specific sites of the polynucleotides (site binding) does not occur to a significant extent. Rather, the metal ions are bound in these systems mainly by electrostatic forces, forming a mobile cloud. The differences in binding strength which are nevertheless observed are attributed to differences in the conformation of the polynucleotides which result in different charge densities.  相似文献   

11.
The conformational and binding properties towards Cu(II) and Ni(II) ions of Gly-Gly-His derivatives of poly(l-lysine) have been investigated mainly using circular dichroism (c.d.) spectroscopy. These derivatized polymers can be considered macromolecular analogues of the Cu(II) and Ni(II) binding site of human serum albumin. It has been shown that modification up to 53% of the ε-amino groups of lysine side chains by covalent binding of the tripeptide unit Gly-Gly-His does not induce appreciable alteration of the α-helix forming tendency of the polylysine backbone. The derivatized polymers exhibit strong affinity towards Cu(II) and Ni(II) ions. At neutral pH, complexes are formed in which each tripeptide chelating unit is linked to one metal ion. The spectral characteristics in the visible absorption region are consistent with a square planar geometry of the complexes, with deprotonated peptide groups and one imidazole nitrogen in the coordination sphere of the ion. C.d. measurements in the far u.v. indicate that complex formation in the side chains causes an increase of ordered structure of the peptide backbone at neutral pH. This fact is interpreted in terms of a reduced electrostatic repulsion among side chains due to charge neutralization in the tripeptide units linked to metal ions.  相似文献   

12.
The DNA conformation was studied at different relation between Na+ and Me2+ (Mn2+ or Mg2+) ions in solution at the fixed total ionic strength mu. At low mu the intrinsic viscosity of DNA [eta] decreased to the limited fixed value with the increasing of Mn2+ or Mg2+ concentration (CMe2+). At higher mu greater than or equal to 0.1 M [eta] doesn't depend on CMe2+. The presence of Mn2+ in solution caused a decrease of the optical anisotropy of DNA and the value of epsilon 260 (p) independent on ionic strengths. In contrary, these parameters of DNA didn't change in solution with Mg2+-concentration. The observed differences in the effects of Mn2+ and Mg2+ on the optical properties of the macromolecule suggest that there are different modes of binding of these ions to DNA. It has been concluded, that Mn2+ interacts with bases and phosphate groups of DNA, but Mg2+--only with phosphates. The persistence length of DNA doesn't depend on Me2+ concentration under the conditions of the experiment (mu greater than or equal to 0.005 M).  相似文献   

13.
The interaction of HCl with calf thymus DNA was investigated in aqueous solution at pH 7-2 with H+/DNA(P)(P:phosphate) molar ratios (r) of 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform (FTIR) difference spectroscopy. Correlations between spectral changes, proton binding mode, DNA denaturation, and conformational variations are established. A comparison was also made between their spectra of denaturated DNA, in the presence of proton and Cu ions with similar cation concentrations. The FTIR difference spectroscopic results have shown that at low proton concentrations of r = 1/80 and 1/40 (pH 7–5), no major spectral changes occur for DNA, and the presence of H+ results in an increased base-stacking interaction and helical stability. At higher proton concentrations of r > 1/40, the proton binding to the cytosine and adenine bases begins with major destabilization of the helical duplex. As base protonation progresses, a B to C conformational conversion occurs with major DNA spectral changes. Protonation of guanine bases occurs at a high cation concentration r > 1/2 (pH < 3) with a major increase in the intensity of several DNA in-plane vibrations. Copper ion complexation with DNA exhibits marked similarities with proton at high cation concentrations (r > 1/10), whereas at low metal ion concentrations, copper–PO2 and copper–guanine N-7 bindings are predominant. No major DNA conformational transition was observed on copper ion complexation. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The conformational and binding properties towards Cu(II) and Ni(II) ions of Gly-Gly-His derivatives of poly(l-lysine) have been investigated mainly using circular dichroism (c.d.) spectroscopy. These derivatized polymers can be considered macromolecular analogues of the Cu(II) and Ni(II) binding site of human serum albumin. It has been shown that modification up to 53% of the ε-amino groups of lysine side chains by covalent binding of the tripeptide unit Gly-Gly-His does not induce appreciable alteration of the α-helix forming tendency of the polylysine backbone. The derivatized polymers exhibit strong affinity towards Cu(II) and Ni(II) ions. At neutral pH, complexes are formed in which each tripeptide chelating unit is linked to one metal ion. The spectral characteristics in the visible absorption region are consistent with a square planar geometry of the complexes, with deprotonated peptide groups and one imidazole nitrogen in the coordination sphere of the ion. C.d. measurements in the far u.v. indicate that complex formation in the side chains causes an increase of ordered structure of the peptide backbone at neutral pH. This fact is interpreted in terms of a reduced electrostatic repulsion among side chains due to charge neutralization in the tripeptide units linked to metal ions.  相似文献   

15.
16.
The thermal denaturation method was employed to study the effect of Ca2+ and Mn2+ ions on the DNA helix–coil transition parameters at Na+ concentrations of 10?3–10?1M. At low ion concentrations, thermal stability increases, the melting range passes through a maximum, and the denaturation curves become asymmetric. These changes are quantitatively similar for Mn2+ and Ca2+ ions. With a further increase in the concentration of bivalent ions, the conformational transition temperatures pass through a maximum, and the melting range first tends to saturation and then rapidly decreases to 1–2°C. The Mn2+ concentrations, at which the above effects occur, are an order of magnitude lower than the Ca2+ concentrations. Comparison of experimental results and calculation in terms of the ligand theory permitted estimation of binding constants characterizing association between Mn2+ and Ca2+ ions and bases of native and denatured DNA. We show that, unlike the interaction with phosphates, bivalent ion–DNA base binding is weakly dependent on monovalent ion concentration in the solution.  相似文献   

17.
Since 1H-NMR spectra of the calcium bound form (holo) and the calcium free form (apo) of equine lysozyme have an overall similarity, the folded structure of apo equine lysozyme seems to be similar to the holo structure at 25 degrees C and pH 7.0, even at low ionic strengths except for subtle conformational change. However, calcium titration experiments showed that a number of resonances change by a slow exchange process. The changes saturated at one calcium ion per one lysozyme molecule, and no more change was observed by further addition of calcium ions. This shows that just one calcium ion binds to equine lysozyme. To make assignments for these changed proton resonances, two-dimensional 1H-NMR studies, correlated spectroscopy (COSY), two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) and nuclear Overhauser effect spectroscopy (NOESY) were carried out. A structural model of equine lysozyme based on the crystal structure of human lysozyme was estimated and used to assign some resonances in the aromatic and beta-sheet regions. It was possible to use some proton signals as a probe to determine the specific conformational change induced by calcium ions. The calcium binding constant KCa was estimated from calcium titration experiments in which changes in the proton signal were monitored. The log KCa value was found to be on the order of 6-7, which is in agreement with the calcium binding constant determined by fluorescence probes. This means that the protons are affected by specific calcium binding.  相似文献   

18.
A new method for investigating the binding of ions with polyelectrolytes has been developed. This method, based on Donnan equilibrium and an isotope exchange between the electrolyte and polyelectrolyte, can distinguish territorial from specific binding of ions and can determine fractions of ions bound with the polyion. This method can determine ion binding with polyelectrolytes in a wide range of polyelectrolyte concentrations in multicomponent solutions. The method was tested with radioactive tracers 22Na+, 36Cl- and heparin sodium salt. The influence of the ionic strength on the Na+ binding with heparin was investigated at 310 K. In the limit of zero ionic strength, all Na+ ions are bound to heparin, but only 45% of them are exchangeable. Thus Na+ ions can be bound both territorially and specifically. The fraction of bound ions decreases rapidly with increasing ionic strength. The fraction of the specifically bound ions becomes negligible when the ionic strength exceeds 0.01 M, whereas the fraction of territorially bound ions can be neglected at ionic strengths higher than 0.45 M.  相似文献   

19.
Based on equilibrium binding studies, as well as on kinetic investigations, two types of interactions of Cu2+ ions with native DNA at low ionic strength could be characterized, namely, a nondenaturing and a denaturing complex formation. During a fast nondenaturing complex formation at low relative ligand concentrations and at low temperatures, different binding sites at the DNA bases become occupied by the metal ions. This type of interaction includes chelate formation of Cu2+ ions with atoms N(7) of purine bases and the oxygens of the corresponding phosphate groups, chelation between atoms N(7) and O of C(6) of the guanine bases, as well as the formation of specific intestrand crosslink complexes at adjacent G°C pairs of the sequence dGpC. CD spectra of the resulting nondenatured complex (DNA–Cu2+)nat may be interpreted in terms of a conformational change of DNA from the B-form to a C-like form on ligand binding. A slow cooperative denaturing complex formation occurs at increased copper concentrations and/or at increased temperatures. The uv absorption and CD spectra of the resulting complex, (DNA–Cu2+)denat, indicate DNA denaturation during this type of interaction. Such a conclusion is confirmed by microcalorimetric measurements, which show that the reaction consumes nearly the same amount of heat as acid denaturation of DNA. From these and the kinetic results, the following mechanism for the denaturing action of the ligands is suggested: binding of Cu2+ ions to atoms N(3) of the cytosine bases takes place when the cytosines come to the outside of the double helix as a result of statistical fluctuations. After the completion of the binding process, the bases cannot return to their initial positions, and thus local denaturation at the G·C pairs is brought about. The probability of the necessary fluctuations occurring is increased by chelation of Cu2+ ions between atoms N(7) and O of C(6) of the guanine bases during nondenaturing complex formation, which loosens one of the hydrogen bonds within the G·C pairs, as well as by raising the temperature. The implications of the new binding model, which comprises both the sequence-specific interstand crosslinks and the described mechanism of denaturing complex formation, are discussed and some predictions are made. The model is also used to explain the different renaturation properties of the denatured complexes of Cu2+, Cd2+, and Zn2+ ions with DNA. In temperature-jump experiments with the nondenatured complex (DNA–Cu2+)nat, a specific kinetic effect is observed, namely, the appearance of a lag in the response to the perturbation. The resulting sigmoidal shape of the kinetic curves is considered to be a consequence of the necessity of disrupting a certain number of the crosslinks existing in the nondenatured complex before the local unwinding of the binding regions (a main step of denaturing complex formation) may proceed.  相似文献   

20.
The influence of Cd2+ ions on the conformational equilibrium of single-stranded (poly(U), poly(A), poly(I)) and triple-stranded polyribonucleotides (A2I, A2U) in aqueous solutions (0.1 M Na+ pH 7) has been investigated using difference UV spectroscopy and thermal denaturation. Analysis of the shape and intensity of the DUV spectra of poly(A), poly(I), and A2I has revealed the presence of two types of complex formed as a result of (i) interaction between Cd2+ and the N7 atoms of purines, producing macrochelates; and (ii) binding of Cd2+ to the N1 atoms of poly(A) and poly(I). Since Cd2+ ions are not bound to heteroatoms of the bases in A2U, the conformation of the structure remains stable up to 0.02 M Cd2+. There is a critical Cd2+ concentration (~1.5?10?4 M) above which A2I assumes a new helical conformation with lower thermal stability. It is supposed that, upon the formation of the “metallized” A2I triplex, the Cd2+ ions are located inside the triple helix and form bridges between the hypoxanthine and adenine of the homopolynucleotide strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号