首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heifers between Days 6 and 10 of the cycle were allocated at random to groups of 8 and treated with (i) a 4% progesterone-releasing intravaginal device (PRID) + oestrogen capsule for 12 days; (ii) 4% PRID for 12 days; (iii) 20% PRID for 12 days; (iv) 4% for 14 days; or (v) 20% PRID for 14 days. Blood was obtained daily during treatment and at 2- or 4-h intervals for 72 h after removal of PRIDs. Some animals were sampled every 20 min for 4.676 h on the 3rd day after PRID insertion, and 1 day before and 36 h after removal of the PRID insertion, and 1 day before and 36 h after removal of the PRID. During progesterone treatment there was: (i) no correlation between concentrations of progesterone and LH within days; (ii) a significant negative correlation between progesterone and days (P less than 0.01) and also between progesterone and LH over days (P less than 0.01); (iii) the overall correlation co-efficient between LH and days was positive (P less than 0.05). The amplitude of LH or FSH episodes was not affected as progesterone concentrations declined during PRID treatment, but the number of LH (but not FSH) episodes was increased (p less than 0.01). After PRID removal, the amplitude of both LH and FSH episodes increased (P less than 0.01). We suggest that progesterone is part of a negative feedback complex on LH secretion in cattle and that this effect is apparently mediated through frequency of episodic LH release.  相似文献   

2.
3.
Dairy heifers were superovulated in the presence (dominant group, N = 8) or absence (non-dominant group, N = 6) of a dominant follicle at the start of a a superovulatory treatment on Days 7-12 of the oestrous cycle (Day 0 = oestrus). Daily ultrasonographic observations of ovaries (recorded on videotape) starting on Day 3 were used to assess the presence or absence of a dominant follicle (diameter greater than 9 mm, in a growing phase or at a stable diameter for less than 4 days) and to monitor follicular development before and during treatment. The number of CL estimated by ultrasonography (7.1 +/- 1.8 vs 13.5 +/- 1.4) or by rectal palpation (6.9 +/- 2.0 vs 16.3 +/- 1.6) and mean progesterone concentrations (32.5 +/- 19 vs 80.7 +/- 16 ng/ml) after treatment were lower (P less than 0.01) in the dominant than in the non-dominant group. Based on number of CL, two populations of heifers were identified in the dominant group, i.e. those that had a high (dominant-high, N = 4; greater than 7 CL) or a low (dominant-low, N = 4; less than 7 CL) response to treatment. During treatment, the increases in number of follicles 7-10 mm and greater than 10 mm in diameter occurred sooner and were of higher magnitude in the non-dominant than in the dominant-high or dominant-low groups (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Adult Soay rams were infused for 21 days with 50 micrograms buserelin/day, using s.c. implanted osmotic mini-pumps. The continuous treatment with this LHRH agonist induced a supraphysiological increase in the blood concentrations of LH (15-fold) and testosterone (5-fold) followed by a decrease below pre-treatment values after 10 days. The blood concentrations of FSH showed only a minimal initial increase but the subsequent decrease was dramatic, occurring within 1 day. By Day 10 of treatment, the blood concentrations of all 3 hormones were low or declining, LH pulses were absent in the serial profiles based on 20-min blood samples and the administration of LHRH antiserum failed to affect the secretion of LH or testosterone. By Day 21, the secretion of FSH, LH and testosterone was maximally suppressed. The i.v. injection of 400 ng LHRH was totally ineffective at stimulating an increase in the blood concentrations of LH while the i.v. injection of 50 micrograms ovine LH induced a normal increase in the concentrations of testosterone; this confirmed that the chronic treatment with the LHRH agonist had desensitized the pituitary gonadotrophs without markedly affecting the responsiveness of the testicular Leydig cells. The ratio of bioactive: radioimmunoactive LH did not change during the treatment. The long-term effect of the infusion was fully reversible as shown by the increase in the blood concentrations of FSH, LH and testosterone and the return of normal pulsatile fluctuations in LH and testosterone within 7 days of the end of treatment.  相似文献   

5.
Six heifers were injected i.m. with 2500 i.u. PMSG followed by 15 mg prostaglandin 48 h later. Serial blood samples were collected through a catheter in the caudal vena cava every 10 min for 8 h on Day 10 (7 h after PMSG administration), during luteal regression (7 h after prostaglandin administration) and on the day thereafter. Four normally cyclic heifers served as a control group. Concentrations of progesterone, androstenedione, oestradiol, LH, FSH, and PMSG in the vena cava samples were measured and the frequency and amplitudes of episodic pulses of all hormones were estimated except for PMSG. Ovaries were collected by ovariectomy at 50 h after onset of luteal regression to determine the number of preovulatory follicles (non-atretic follicles greater than or equal to 10 mm). Stimulation of follicular growth by administration of PMSG resulted in the following effects on the secretion of steroids and endogenous gonadotrophins. (1) There were no alterations in progesterone concentration and the amplitude and frequency of episodic pulses. Mean (+/- s.e.m.) concentrations were 54.1 +/- 5.8, 19.1 +/- 3.1 and 3.4 +/- 0.9 nmol/l on Day 10 (L), during luteal regression (LR) and on the day thereafter (F) respectively. (2) There were no alterations in the episodic secretion patterns of androstenedione. Mean concentrations were 0.20 +/- 0.02, 0.15 +/- 0.02 and 0.11 +/- 0.02 nmol/l for the L, LR and F periods respectively. (3) There was an increase in oestradiol concentration from 17.1 +/- 3.0 pmol/l during the L period to 233.7 +/- 86.4 pmol/l during the F period. Pulse amplitude was enhanced compared to corresponding periods in control animals whereas pulse frequency remained the same. The oestradiol concentration was significantly correlated with the number of preovulatory follicles (r = 0.82, P less than 0.05). (4) There was a suppression of the frequency of episodic LH pulses (/8 h) during the LR (3.2 +/- 0.7) and F (4.3 +/- 0.4) periods compared to corresponding periods in control heifers (9.5 +/- 0.9 and 7.0 +/- 1.5 respectively). The preovulatory LH peak occurred earlier in 4 of 6 treated heifers. (5) There was a suppression of FSH concentrations, pulse amplitude and frequency during the LR and F (17.4 +/- 0.9 mg/l, 4.7 +/- 0.8 microgram/l and 7.5 +/- 0.4 pulses/8 h) periods compared to the corresponding F-period values (35.6 +/- 6.2 mg/l, 9.8 +/- 1.6 micrograms/l and 9.3 +/- 0.3 pulses/8 h) in control heifers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Prepubertal crossbred beef heifers were injected (i.v.) with 50 micrograms bovine LH every 2 h for 48 h (first injection at 0 h). At 28 h, number and diameter of ovarian follicles were determined by ultrasonic scanning, and unilateral removal of either the ovary bearing the largest follicle (Group UL, N = 5) or the opposite ovary (Group UO, N = 4) was performed; control animals remained intact (Group I, N = 5). Blood samples were taken every 2 h (starting at 0 h) for a 60-h period to assess concentrations of gonadotrophins and oestradiol. Preovulatory-like surges of LH occurred in 0/5, 4/4 and 5/5 heifers for Groups UL, UO and I respectively; the time of the LH surge did not differ between animals in Groups I and UO (mean = 40 h). FSH in Group UL heifers rose to a plateau immediately after unilateral ovariectomy; this pattern was not observed in the other two groups (P less than 0.01). The area under the curve for FSH was significantly different (P less than 0.05) among groups after 28 h. Preovulatory-like surges of FSH occurred coincidently with those of LH, except for one Group I heifer. An increase in the concentrations of oestradiol between 0 and 28 h was detected in all animals. Profiles of oestradiol during this period did not differ between heifers that had an LH surge (Group UO and I) and those that did not (Group UL).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
In bovine in vitro embryo production, the IVM step is rather successful with 80% of the oocytes reaching the MII stage. However, the extent to which the process limits the yield of viable embryos is still largely unknown. Therefore, we compared embryonic developmental capacity during IVC of IVF oocytes which had been matured in vitro with those matured in vivo. In vitro maturation was carried out for 22 h using oocytes (n = 417) obtained from 2- to 8-mm follicles of ovaries collected from a slaughterhouse in M199 with 10% fetal calf serum (FCS), 0.01 IU/mL LH, and 0.01 IU/mL FSH. In vivo matured oocytes (n = 219) were aspirated from preovulatory follicles in eCG/PG/anti-eCG-superovulated heifers 22 h after a fixed time GnRH-induced LH surge; endogenous release of the LH surge was suppressed by a Norgestomet ear implant. This system allowed for the synchronization of the in vitro and in vivo maturation processes and thus for simultaneous IVF of both groups of oocytes. The in vitro developmental potential of in vivo matured oocytes was twice as high (P < 0.01) as that of in vitro matured oocytes, with blastocyst formation and hatching rates 11 d after IVC of 49.3 +/- 6.1 (SEM; n = 10 heifers) vs 26.4 +/- 1.0% (n = 2 replicates), and 39.1 +/- 5.1% vs 20.6 +/- 1.4%, respectively. It is concluded that IVM is a major factor limiting in the in vitro production of viable embryos, although factors such as the lack of normal preovulatory development of IVM oocytes contributed to the observed differences.  相似文献   

9.
The optimum superovulatory dose of Folltropin was determined and compared with a standard 28 mg dose of FSH-P in beef heifers. In Experiment 1, mean numbers of corpora lutea (CL) did not differ among the groups treated with 10, 20, 30 or 40 mg Folltropin or FSH-P, and the mean CL number was reduced (P<0.05) only in the 5 mg Folltropin group. Mean numbers of ova/embryos recovered, fertilized and transferable were greater (P<0.05) for the 10, 20 and 30 mg Folltropin groups than for the 5 mg group. The 40 mg Folltropin group and the FSH-P group were intermediate. The percentage of fertilized and transferable embryos did not differ over the dosages used in this experiment. In Experiment 2, mean numbers of CL were greater for the 9, 18 and 36 mg Folltropin groups than for the 4.5 mg group, with the 9 mg group being lower than the 36 mg group (P<0.05). The 18 mg group was intermediate and did not differ. Mean numbers of ova/embryos recovered and fertilized ova were greater for the 9, 18 and 36 mg groups (P<0.05) than for the 4.5 mg group. The percent of fertilized and mean number and percentage of transferable embryos did not differ among treatments. We conclude that Folltropin may be a satisfactory superovulatory replacement for FSH-P and that a dose of 18 to 20 mg Folltropin may be within the optimum superovulatory dosage range for beef heifers. Dosages of Folltropin of more than twice the optimum did not result in deterioration of ova/embryo quality.  相似文献   

10.
Angus and Angus crossbred heifers were ovariectomized, treated with oestradiol implants and randomly assigned to the natural photoperiod of fall to spring for 43 degrees N latitude or extra light simulating the photoperiod of spring to fall. Weekly blood samples were taken for 6 months (fall to spring equinox). All heifers were cannulated every 4 weeks and blood samples were taken for 4 h at 15-min intervals. Sera were assayed for LH, FSH, prolactin and oestradiol. In samples taken weekly, serum LH and FSH concentrations were higher while serum prolactin was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for both FSH and prolactin with concentrations diverging as photoperiod diverged. Circulating concentrations of oestradiol were not different between groups. In samples taken every 4 weeks at 15-min intervals, baseline concentrations of LH and FSH and LH pulse amplitude were higher while prolactin pulse frequency was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for each of these pulsatile characteristics. The correlation between LH and prolactin concentrations estimated from the 15-min samples differed between the two photoperiod treatment groups. The pooled correlation coefficient (r) was -0.12 under natural photoperiod and +0.50 under extra light. There was also a photoperiod X time interaction with negative correlations occurring when photoperiod was decreasing and positive correlations occurring when photoperiod was increasing. These results support the hypothesis that photoperiod alters serum concentrations of LH, FSH and prolactin in cattle.  相似文献   

11.
Price CA 《Theriogenology》1995,43(3):543-549
Previous work has shown a suppressive effect of superovulatory treatments on pulsatile LH release in cattle. This study tested the hypothesis that this suppression may be caused, at least in part, by a direct effect of commercial gonadotropin preparations on the hypothalamus/pituitary gland. Crossbred Holstein heifers, ovariectomized 20 d before the start of the experiment, received 6 injections of FSH (50 mg Folltropin) at 12-h intervals (n = 6); a single injection of 2500 IU eCG followed by 5 injections of sterile saline at 12-h intervals (n = 6); or 6 injections of saline at 12-h intervals (controls; n = 5). Blood samples were taken every 10 min for 8 h the day before and 3 d after the beginning of treatment to assess LH pulsatility. At the end of these sampling periods, a bolus injection of GnRH (7 ng/kg) was given to assess pituitary responsiveness. There were no effects of the superovulatory drugs on mean LH concentrations, nor on LH pulse frequency or amplitude (P > 0.05). The pituitary response to GnRH was significantly elevated in eCG- but not FSH-treated animals (paired t test; P < 0.05). These data demonstrate that superovulatory preparations do not suppress pulsatile LH secretion independently of the ovaries in cattle.  相似文献   

12.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

13.
Studies have shown inhibitory effects of endogenous opioids on LH secretion in early post-natal heifers. However, it is not clear whether these effects change during the rest of the prepubertal period or whether the inhibitory influences on the GnRH neurones are direct or by way of other neuronal systems. Two experiments were performed in heifer calves to study the developmental patterns of opioidergic, dopaminergic and adrenergic regulation of LH and the possible interactions between opioids and dopaminergic and adrenergic neuronal systems, in the regulation of LH secretion. In Expt 1 four groups each of five heifer calves were used. Blood samples were taken every 15 min for 10 h and each calf received one of the following treatments as a single injection at 4, 14, 24, 36 and 48 weeks of age: (i) naloxone (opioid antagonist, 1 mg kg(-1), i. v.); (ii) sulpiride (dopamine D2 antagonist, 0.59 mg kg(-1), s.c.); (iii) naloxone and sulpiride combined; or (iv) vehicle (control group). Treatments began after the first blood sample was taken. The design of Expt 2 was similar; a separate group of heifer calves was assigned to receive one of the following treatments as a single injection at 4, 14, 24, 36 and 48 weeks of age: (i) naloxone; (ii) phenoxybenzamine (an alpha-adrenoreceptor blocker, 0.8 mg kg(-1), i. v.); (iii) naloxone and phenoxybenzamine; (iv) or vehicle. Results from Expt 1 showed that the maximum concentration of LH and the number of calves responding to treatments with an LH pulse was higher in the first hour after treatments at 36 and 48 weeks of age in the naloxone group compared with the control or sulpiride groups (P < 0.05). These values in the naloxone group also increased over time and were greatest at 48 weeks of age (P < 0.05). In heifers given naloxone + sulpiride treatment at 36 and 48 weeks of age, maximum concentrations of LH in the first hour after treatment did not differ from the naloxone and control groups. In Expt 2, at 36 and 48 weeks of age, treatment with naloxone with or without phenoxybenzamine resulted in higher concentrations of LH than in the controls (P < 0.05). No pulses were seen over the first hour of treatment at 36 and 48 weeks of age in heifers treated with phenoxybenzamine. The 10 h periods of blood sampling at 48 weeks of age revealed that phenoxybenzamine alone suppressed LH pulse frequency and mean serum concentrations of LH compared with the control group (P < 0.05). It was concluded that a strong or more acute inhibition of LH secretion by endogenous opioids developed in mid- to late prepubertal heifers, or alternatively, that removal of opioidergic inhibition at the GnRH neurone unmasked stimulatory inputs that were greater in heifers close to first ovulation. Since sulpiride appeared to negate in part the effects of naloxone on LH release, the suppressive effects of opioids could be exerted in part through the inhibition or blocking of a stimulatory dopaminergic system. alpha-Adrenergic neuronal systems have stimulatory effects on LH release, especially during the late prepubertal period, but do not appear to mediate opioidergic inhibition of LH secretion in prepubertal heifer calves.  相似文献   

14.
Injections of an opioid agonist (bremazocine) and/or an antagonist (quadazocine) were given to heifers during the luteal or follicular phase of the oestrous cycle. Quadazocine was injected (210 mg/injection) three times at 2-h intervals, and bremazocine was injected (0.45 mg/injection) every 15 min for 6 h. Blood samples were taken every 15 min beginning 6 h before treatments started and continued for 18 h. LH secretion patterns were not affected by quadazocine in the luteal-phase heifers, but quadazocine and bremazocine had marked effects during the follicular phase. Quadazocine increased LH secretion by increasing peak height but not peak frequency. Bremazocine decreased LH secretion through both peak height and frequency. This decrease was of greater magnitude than the increase due to quadazocine. When quadazocine and bremazocine were given together, these effects were cancelled and none of the effects carried over into the bleeding period after treatments stopped. No apparent interruption of follicular maturation was detected since all follicular-phase heifers were detected in oestrus at normal intervals. We conclude that heifers in this experiment did not have an opioid-mediated mechanism for progesterone suppression of LH but that an opioid mechanism for modulating LH does exist during the follicular phase.  相似文献   

15.
Chronic hyperglycemia inhibits the male gonadal axis. The present analyses test the hypothesis that acute glucose ingestion also suppresses LH and testosterone (T) secretion and blunts the LH-T dose-response function. The design comprised a prospectively randomized crossover comparison of LH and T secretion after glucose vs. water ingestion in a Clinical Translational Research Center. The participants were healthy men (n = 57) aged 19-78 yr with body mass index (BMI) of 20-39 kg/m(2). The main outcome measurements were deconvolution and LH-T dose-response analyses of 10-min data. LH-T responses were regressed on glucose, insulin, leptin, adiponectin, age, BMI, and CT-estimated abdominal visceral fat. During the first 120 min after glucose ingestion, for each unit decrease in LH concentrations, T concentrations decreased by 86 (27-144) ng/dl (r = 0.853, P < 0.001). Based upon deconvolution analysis, glucose compared with water ingestion reduced 1) basal (nonpulsatile; P < 0.001) and total (P < 0.001) T secretion without affecting pulsatile T output and 2) pulsatile (P = 0.043) but not basal LH secretion. By multivariate analysis, pulsatile LH secretion positively predicted basal T secretion after glucose ingestion (r = 0.374, P = 0.0042). In addition, the glucose-induced fall in pulsatile LH secretion was exacerbated by higher fasting insulin concentrations (P = 0.054) and attenuated by higher adiponectin levels (P = 0.0037). There were no detectable changes in the analytically estimated LH-T dose-response curves (P > 0.30). In conclusion, glucose ingestion suppresses pulsatile LH and basal T secretion acutely in healthy men. Suppression is influenced by age, glucose, adiponectin, and insulin concentrations.  相似文献   

16.
This study was conducted to describe the changes in serum LH and FSH concentrations in Holstein heifers following intramuscular (i.m.) injection of various dosages of fertirelin acetate and other commerically available GnRH products at their labeled dosages. The design was an incomplete Latin-square which gave nine replicates of each treatment. Treatments administered on Days 8 to 16 of the estrous cycle consisted of saline; 25, 50, 100 or 200 mug fertirelin acetate; 100, 250 or 500 mug gonadorelin; and 10 or 20 mug buserelin. Blood samples were collected via jugular catheters from 1 h before to 8 h after each injection. Log (Base 2) area under the LH and FSH curves (log AUC) were used to evaluate response to fertirelin acetate dosages and to determine difference (LSD: 0.05) and bioequivalence (alpha = 0.05) between the various dosages of GnRH products tested. Significant quadratic dose response relationships were detected for the LH and FSH log AUC data. Plots of the LH log AUC but not the FSH log AUC data suggested that a response plateau was being approached at the higher dosages of fertirelin acetate. Bioequivalence (alpha = 0.05) was based on the assumption that two means are equivalent if they differ by no more than 20% of the reference log AUC mean. Using these criteria fertirelin acetate is 2.5 to 10 times more potent than gonadorelin, whereas buserelin is approximately 10 to 20 times more potent than fertirelin acetate in the bovine for LH and FSH release.  相似文献   

17.
Heifers (n=31) were superovulated with an FSH-P/cloprostenol regimen, and at 12 and 24 hours after the onset of estrus they were inseminated. Blood sampling for LH analyses and ultrasound scanning of the ovaries were performed at 4-hours intervals. The scanning, at which the first and last ovulations were recorded, was performed at 22.7 +/- 1.5 (mean +/- SD) and 31.0 +/- 1.5 hours after the LH peak, respectively. An average of 7.8 +/- 1.0 ovulations was monitored when the first ovulations were detected, while 2.8 +/- 0.7 ovulations occurred later. At 16 hours after detection of the first ovulations the oviducts were flushed and 5.6 +/- 0.5 fertilized and 2.3 +/- 0.3 unfertilized ova were isolated per animal. The fertilized ova displayed spherical pronuclei of synchronous development, and polyspermic penetration was not seen. At 24 hours after detection of the first ovulations the content of the remaining 3.3 +/- 0.5 nonovulatory follicles > 8 mm per animal was aspirated. Expanded cumulus investment was found in 69.4% of the oocytes, while 22.4% had abstricted the first polar body.  相似文献   

18.
Two experiments were conducted in Ile-de-France ewes to study changes in pulsatile LH secretion in ewes ovariectomized during anoestrus or during the midluteal phase of the oestrous cycle. In Exp. 1, blood samples were taken every 20 min for 12 h the day before ovariectomy (Day 0). After ovariectomy, samples were taken every 10 min for 6 h (10 ewes per group), on Days 1, 3, 7 and 15. In Exp. 2 samples were taken every 10 min for 6 h (10 ewes per group) on Days 7, 15, 30, 60, 90, 120, 150 and 180 after ovariectomy. Further samples were taken (5 ewes per group) at 9 and 12 months after ovariectomy. There were significant interactions between season and day of sampling for the interval between LH pulses in both experiments. LH pulse frequency increased within 1 day of ovariectomy and the increase was more rapid during the breeding season. There were clear seasonal differences in pulse frequency in Exp. 2. Compared with ewes ovariectomized in anoestrus, pulse frequency was significantly higher for ewes ovariectomized in the breeding season, from Day 7 until Day 120. Once pulse frequency had increased in ewes about the time of the normal breeding season, pulse frequency remained high and subsequent seasonal changes were greatly reduced. Pulse amplitude increased immediately after ovariectomy to reach a maximum on Day 7 and there were no differences between season of ovariectomy in the initial changes in amplitude. In Exp. 2, changes in amplitude followed changes in pulse interval and there was a significant interaction between season and day of sampling. There were no significant effects of season on nadir LH concentrations which increased throughout the duration of the experiments. These results show that, in ovariectomized ewes, LH pulse frequency observed on a given day depends on time after ovariectomy, season at the time of sampling and on previous exposure of ewes to stimulatory effects of season. The direct effects of season on LH pulse frequency and seasonal changes in sensitivity to steroid feedback may contribute to control of the breeding season and their relative contributions to the beginning and end of the breeding season may differ.  相似文献   

19.
20.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号