首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid precursor protein (APP) is the source of Abeta fragments implicated in the formation of senile plaques in Alzheimer's disease (AD). APP-related proteins are also expressed at high levels in the embryonic nervous system and may serve a variety of developmental functions, including the regulation of neuronal migration. To investigate this issue, we have cloned an orthologue of APP (msAPPL) from the moth, Manduca sexta, a preparation that permits in vivo manipulations of an identified set of migratory neurons (EP cells) within the developing enteric nervous system. Previously, we found that EP cell migration is regulated by the heterotrimeric G protein Goalpha: when activated by unknown receptors, Goalpha induces the onset of Ca2+ spiking in these neurons, which in turn down-regulates neuronal motility. We have now shown that msAPPL is first expressed by the EP cells shortly before the onset of migration and that this protein undergoes a sequence of trafficking, processing, and glycosylation events that correspond to discrete phases of neuronal migration and differentiation. We also show that msAPPL interacts with Goalpha in the EP cells, suggesting that msAPPL may serve as a novel G-protein-coupled receptor capable of modulating specific aspects of migration via Goalpha-dependent signal transduction.  相似文献   

2.
3.
4.
5.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.  相似文献   

6.
7.
8.
To describe the serotonergic system in a tunicate larva, we cloned a gene encoding for tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin synthesis, in the ascidian Ciona intestinalis and studied its expression pattern during development. Ci-TPH expression was found from tailbud stage in the precursor cells of the visceral ganglion and in the tail. In the larva, TPH-expressing neurons formed two clusters in the anterior central nervous system at the level of the visceral ganglion. Moreover, we found Ci-TPH expression at the level of the muscle cells of the tail and suggested that this localisation might be at the level of neuro-muscolar junctions. Moreover, we discussed the involvement of serotonin in the control of larval locomotory activity.  相似文献   

9.
Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma differentiation to induce apoptosis in cells that are not committed to differentiate.  相似文献   

10.
Wnt11 is a secreted protein that signals through the non-canonical planar cell polarity pathway and is a potent modulator of cell behavior and movement. In human, mouse, and chicken, there is a single Wnt11 gene, but in zebrafish and Xenopus, there are two genes related to Wnt11. The originally characterized Xenopus Wnt11 gene is expressed during early embryonic development and has a critical role in regulation of gastrulation movements. We have identified a second Xenopus Wnt11-Related gene (Wnt11-R) that is expressed after gastrulation. Sequence comparison suggests that Xenopus Wnt11-R, not Wnt11, is the ortholog of mammalian and chicken Wnt11. Xenopus Wnt11-R is expressed in neural tissue, dorsal mesenchyme derived from the dermatome region of the somites, the brachial arches, and the muscle layer of the heart, similar to the expression patterns reported for mouse and chicken Wnt11. Xenopus Wnt11-R exhibits biological properties similar to those previously described for Xenopus Wnt11, in particular the ability to activate Jun-N-terminal kinase (JNK) and to induce myocardial marker expression in ventral marginal zone (VMZ) explants. Morpholino inhibition experiments demonstrate, however, that Wnt11-R is not required for cardiac differentiation, but functions in regulation of cardiac morphogenesis. Embryos with reduced Wnt11-R activity exhibit aberrant cell-cell contacts within the myocardial wall and defects in fusion of the nascent heart tube.  相似文献   

11.
The initiation of cellular differentiation in the vertebrate central nervous system is a cascade of regulated gene expression events involving both intrinsic and extrinsic factors. Currently, the molecular events underlying the developmental transition from the cessation of cell proliferation to the onset of cell differentiation during neurogenesis are still poorly understood. We have identified a gene, tenp, which is likely to play a role during the transition. tenp mRNA was detected in the developing retina and brain, but not in the heart, kidney, or liver. Anatomically, cells expressing tenp formed a narrow strip at the boundary between the ventricular zone (consisting of proliferating cells) and the intermediate zone (occupied by postmitotic, differentiating cells). Further analysis showed that they were bromodeoxyuridine negative and thus postmitotic, yet without apparent differentiation such as the expression of microtubule-associated protein (MAP2) and neurofilament (NF68). When expressed in chicken embryonic fibroblast cells through transfection, Tenp protein was immunodetected in membrane fractions, implying that Tenp might be a membrane protein as predicted by a computer analysis of its primary sequence. Our data suggested that tenp might be involved in an early neurogenic event that existed transiently after terminal mitosis, yet before the overt differentiation of neural precursor cells. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 319–328, 1998  相似文献   

12.
The Mesp1 gene encodes the basic HLH protein MesP1 which is expressed in the mesodermal cell lineage during early gastrulation. Disruption of the Mesp1 gene leads to aberrant heart morphogenesis, resulting in cardia bifida. In order to study the defects in Mesp1-expressing cells during gastrulation and in the specification of mesodermal cell lineages, we introduced a (beta)-galactosidase gene (lacZ) under the control of the Mesp1 promoter by homologous recombination. The early expression pattern revealed by (beta)-gal staining in heterozygous embryos was almost identical to that observed by whole mount in situ hybridization. However, the (beta)-gal activity was retained longer than the mRNA signal, which enabled us to follow cell migration during gastrulation. In heterozygous embryos, the Mesp1-expressing cells migrated out from the primitive streak and were incorporated into the head mesenchyme and heart field. In contrast, Mesp1-expressing cells in the homozygous deficient embryos stayed in the primitive streak for a longer period of time before departure. The expression of FLK-1, an early marker of endothelial cell precursors including heart precursors, also accumulated abnormally in the posterior region in Mesp1-deficient embryos. In addition, using the Cre-loxP site-specific recombination system, we could determine the lineage of the Mesp1-expressing cells. The first mesodermal cells that ingressed through the primitive streak were incorporated as the mesodermal component of the amnion, and the next mesodermal population mainly contributed to the myocardium of the heart tube but not to the endocardium. These results strongly suggest that MesP1 is expressed in the heart tube precursor cells and is required for mesodermal cells to depart from the primitive streak and to generate a single heart tube.  相似文献   

13.
Go is the most abundant G protein expressed in brain but its function is less known. Here we show a novel function of Goalpha as a mediator of opioid receptor-induced extracellular signal-regulated kinase activation in neural cells. The current study found that, in neuroblastoma x glioma NG108-15 hybrid cells, activation of extracellular signal-regulated kinase through delta opioid receptors was mediated by pertussis toxin-sensitive G protein and independent of Gbetagamma subunits, PI3 kinase and receptor internalization. Overexpression of a dominant negative form of Goalpha1, but not Gialpha2, completely blocked delta opioid receptor-induced extracellular signal-regulated kinase activity. Decreasing Goalpha expression by RNA interference greatly reduced delta opioid receptor-induced extracellular signal-regulated kinase activity and extracellular signal-regulated kinase-dependent gene expression, while knocking down Gialpha2 did not. By taking advantage of differences between human and mouse Goalpha gene sequences, we simultaneously knocked down endogenous Goalpha expression and expressed exogenous human Goalpha subunits. We found that both human Goalpha1 and Goalpha2 could mediate delta opioid receptor-induced extracellular signal-regulated kinase activation. This study suggests that one of the functions of Goalpha in the brain is to mediate extracellular signal-regulated kinase activation by G protein-coupled receptors.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号