首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoinduced changes in the redox state of photosystem I (PSI) primary donor, chlorophyll P700 were studied by measuring differential absorbance changes of pea leaves at 810 nm minus 870 nm (ΔA 810). The kinetics of ΔA 810 induced by 5-s pulses of white light were strongly affected by preillumination. In dark-adapted leaves, the light pulse caused a transient oxidation of P700 and its subsequent reduction. An identical pulse, applied after 30-s preillumination with white light, induced sequential appearance of two peaks of P700 oxidation. These kinetic differences of ΔA 810 reflect regulatory changes of electron flow on the donor and acceptor sides of PSI induced by illumination of leaf for 20–40 s. The amplitude of ΔA 810 second peak depended nonmonotonically on the dark interval preceding illumination: it increased with the length of dark period in the range 3–10 s and decreased upon longer dark intervals. The second wave of ΔA 810 disappeared after the treatment with combination of ionophores preventing ΔpH and electric potential formation at the thylakoid membrane. In leaves treated with monensin eliminating ΔpH only, the ΔA 810 signals become incompletely reversible and were characterized by slow relaxation in darkness. The results indicate an important role of electrochemical proton gradient in generation of the second wave of light-induced P700 oxidation.  相似文献   

2.
G J Harnadek  E A Ries  D Njus 《Biochemistry》1985,24(11):2640-2644
The chromaffin vesicle of the adrenal medulla contains a transmembrane electron carrier that may provide reducing equivalents for dopamine beta-hydroxylase in vivo. This electron-transfer system can be assayed by trapping ascorbic acid inside resealed membrane vesicles (ghosts), adding an external electron acceptor such as ferricytochrome c or ferricyanide, and following the reduction of these acceptors spectrophotometrically. Cytochrome c reduction is more rapid at high pH and is proportional to the amount of chromaffin-vesicle ghosts, at least at low ghost concentrations. At pH 7.0, ghosts loaded with 100 mM ascorbic acid reduce 60 microM cytochrome c at a rate of 0.035 +/- 0.010 mu equiv min-1 (mg of protein)-1 and 200 microM ferricyanide at a rate of 2.3 +/- 0.3 mu equiv min-1 (mg of protein)-1. The rate of cytochrome c reduction is accelerated to 0.105 +/- 0.021 mu equiv min-1 (mg of protein)-1 when cytochrome c is pretreated with equimolar ferrocyanide. Pretreatment of cytochrome c with ferricyanide also causes a rapid rate of reduction, but only after an initial delay. The ferrocyanide-stimulated rate of cytochrome c reduction is further accelerated by the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), probably because FCCP dissipates the membrane potential generated by electron transfer. These rates of electron transfer are sufficient to account for electron transfer to dopamine beta-hydroxylase in vivo and are consistent with the mediation of electron transfer by cytochrome b-561.  相似文献   

3.
Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.  相似文献   

4.
The three most commonly used electron donors for flow dialysis measurements of membrane potential lead to the development of an apparent but artifactual membrane potential with the interior negative in the presence or absence of membrane vesicles. The same three electron donors used in flow dialysis determinations of delta pH in the presence or absence of membrane vesicles lead to the development of an apparent but artifactual delta pH with the interior acidic. These artifacts have been evaluated using two probes for membrane potential, namely, TPP+ and rubidium in the presence of valinomycin and for two probes of delta pH, namely, acetate and DMO. Measurements were made over a range of ionic strengths.  相似文献   

5.
The dependence of thylakoid osmotic volume on NH4Cl uncoupling and on phosphorylation substrates is determined by the centrifuge filtration method. The values obtained are used to evaluate the transmembrane proton gradient in conjunction with either the 9-amino-acridine fluorescence quenching method or the [14C]methylamine uptake method. The pH values obtained with the two methods are compared and a linear relationship is demonstrated in the pH range from 1.4 to 2.7 ([14C]methylamine values). Different linear relationships are obtained depending on the presence or absence of electron acceptor. We conclude that the 9-aminoacridine method can be used for pH determination after calibration with other methods.  相似文献   

6.
The effects of salicylate were examined on Na+/H+ exchange by isolated gastric mucosal surface cells loaded with H+ and resuspended in a buffered medium. Choline salicylate (pH 7.4) increases the dissipation of an intracellular proton gradient which was measured using acridine orange. The exchange of extracellular Na+ with intracellular H+ by surface cells not only remains intact but also is enhanced upon exposure to salicylate. This was confirmed by cellular uptake of 22Na and titration of cellular H+ efflux. Salicylate increases Na+/H+ exchange via a pathway predominantly sensitive to amiloride. However, the data also suggest that salicylate dissipates an intracellular proton gradient by an additional mechanism. The latter is independent of extracellular Na+ and not due to a generalized increase in cellular permeability.  相似文献   

7.
By means of delta pH 14C-methylamine indicator the myometrium vesicle sarcolemma fraction was shown to be capable, while applying a "delta pH-leap", for developing in it a proton transmembrane gradient, dissipating in time. The proton gradient dissipation under Ca ions transmembrane equilibrium concentration is a driving force of these ions transposition against the concentration gradient. The blocking agents of H+ transport--Cd ions and DCCD decrease the proton-dependent 45Ca2+ accumulation in the vesicle sarcolemma fraction. The conclusion has been made about the possibility of Ca2+(H(+)-exchange on the uterus smooth cells sarcolemma. The possible physiological value of this exchange is under discussion.  相似文献   

8.
The light-dependent quenching of 9-aminoacridine fluorescence was used to monitor the state of the transthylakoid proton gradient in illuminated intact chloroplasts in the presence or absence of external electron acceptors. The absence of appreciable light-dependent fluorescence quenching under anaerobic conditions indicated inhibition of coupled electron transport in the absence of external electron acceptors. Oxygen relieved this inhibition. However, when DCMU inhibited excessive reduction of the plastoquinone pool in the absence of oxygen, coupled cyclic electron transport supported the formation of a transthylakoid proton gradient even under anaerobiosis. This proton gradient collapsed in the presence of oxygen. Under aerobic conditions, and when KCN inhibited ribulose bisphosphate carboxylase and ascorbate peroxidase, fluorescence quenching indicated the formation of a transthylakoid proton gradient which was larger with oxygen in the Mehler reaction as electron acceptor than with methylviologen at similar rates of linear electron transport. Apparently, cyclic electron transport occured simultaneously with linear electron transport, when oxygen was available as electron acceptor, but not when methylviologen accepted electrons from Photosystem I. The ratio of cyclic to linear electron transport could be increased by low concentrations of DCMU. This shows that even under aerobic conditions cyclic electron transport is limited in isolated intact chloroplasts by excessive reduction of electron carriers. In fact, P700 in the reaction center of Photosystem I remained reduced in illuminated isolated chloroplasts under conditions which resulted in extensive oxidation of P700 in leaves. This shows that regulation of Photosystem II activity is less effective in isolated chloroplasts than in leaves. Assuming that a Q-cycle supports a H+/e ratio of 3 during slow linear electron transport, vectorial proton transport coupled to Photosystem I-dependent cyclic electron flow could be calculated. The highest calculated rate of Photosystem I-dependent proton transport, which was not yet light-saturated, was 330 mol protons (mg chlorophyll h)–1 in intact chloroplasts. If H+/e is not three but two proton transfer is not 330 but 220 mol (mg Chl H)–1. Differences in the regulation of cyclic electron transport in isolated chloroplasts and in leaves are discussed.  相似文献   

9.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

10.
Munekage Y  Hojo M  Meurer J  Endo T  Tasaka M  Shikanai T 《Cell》2002,110(3):361-371
During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plastoquinone. This alternative electron transfer pathway, whose molecular identity has long been unclear, is known to function in vivo in cyclic electron flow around photosystem I. We propose that the PGR5 pathway contributes to the generation of a Delta(pH) that induces thermal dissipation when Calvin cycle activity is reduced. Under these conditions, the PGR5 pathway also functions to limit the overreduction of the acceptor side of photosystem I, thus preventing photosystem I photoinhibition.  相似文献   

11.
《BBA》2022,1863(8):148909
A very high rate for cyclic electron flow (CEF) around PSI (~180 s?1 or 210 s?1 in minimum medium or in the presence of a carbon source respectively) is measured in the presence of methyl viologen (MV) in intact cells of Chlamydomonas reinhardtii under anaerobic conditions. The observation of an efficient CEF in the presence of methyl viologen is in agreement with the previous results reports of Asada et al. in broken chloroplasts (Plant Cell Physiol. 31(4) (1990) 557–564). From the analysis of the P700 and PC absorbance changes, we propose that a confinement between 2 PC molecules, 1 PSI and 1 cytb6f corresponding to a functional supercomplex is responsible for these high rates of CEF. Supercomplex formation is also observed in the absence of methyl viologen, but with lower maximal CEF rate (about 100 s?1) suggesting that this compound facilitates the mediation of electron transfer from PSI acceptors to the stromal side of cytb6f. Further analysis of CEF in mutants of Chlamydomonas defective in state transitions shows the requirement of a kinase-driven transition to state 2 to establish this functional supercomplex configuration. However, a movement of the LHCII antennae is not involved in this process. We discuss the possible involvement of auxiliary proteins, among which is a small cytb6f-associated polypeptide, the PETO protein, which is one of the targets of the STT7 kinase.  相似文献   

12.
The kinetic behaviours of cytochrome b-563 and cytochrome f are shown to be consistent with their participation in coupled cyclic electron flow in intact chloroplasts. Electron transfer between cytochromes b-563 and cytochrome f is antimycin sensitive. Fluorescence induction studies indicate that plastoquinone may function in a coupled step between the cytochromes.  相似文献   

13.
Measurements of 810 nm transmittance changes in leaves, simultaneously with Chl fluorescence, CO(2) uptake and O(2) evolution, were carried out on potato (Solanum tuberosum L.) leaves with altered expression of plastidic NADP-dependent malate dehydrogenase. Electron transport rates were calculated: J(C) from the CO(2) uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O(2) evolution rate, J(F) from Chl fluorescence parameters and J(I) from the post-illumination re-reduction speed of PSI donors. In the absence of external O(2), J(O) equaled (1.005 +/- 0.003) J(C), independent of the transgenic treatment, light intensity and CO(2) concentration. This showed that nitrite and oxaloacetate reduction rates were very slow. The Mehler-type O(2) reduction was evaluated from the rate of electron accumulation at PSI after the O(2) concentration was decreased from 210 to 20 mmol mol(-1), and resulted in <1% of the linear flow. J(F) and J(I) did not differ from J(C) while photosynthesis was light-limited, but considerably exceeded J(C) at saturating light. Then, typically, J(F) = 1.2 J(C) and J(I) = 1.3 J(C), and J(F) -J(C) and J(I) -J(C) depended little on CO(2) and O(2) concentrations. The results showed that the alternative and cyclic electron flow necessary to compensate variations in the ATP/NADPH ratio were only a few percent of the linear flow. The data do not support the requirement of 14H(+)/3ATP by the chloroplast ATP synthase. We suggest that the fast PSI cyclic electron flow J(I) - J(C), as well as the fast J(F) - J(C) are energy-dissipating cycles around PSI and PSII at light saturation.  相似文献   

14.
15.
The effects of histamine and several H1 and H2 receptor agents on Na+/H+ and Cl-/HCO-3 exchange systems of isolated gastric mucosal surface cells were studied. The cells were acid-loaded by the NH4Cl prepulse technique and the spontaneous Na+- and HCO-3-induced dissipation of the intracellular proton gradient (pHi) was followed using the metachromatic dye acridine orange. Histamine (10(-2-5) M) stimulates HCO-3-induced dissipation of the pHi but has no effect on Na+-induced or spontaneous dissipation. The H1 agonist 2-(2-aminoethyl)pyridine and the H2 agonist dimaprit also have no effect on Na+-induced or spontaneous pHi dissipation. However, both of these agents mimic the effect of histamine on HCO-3-induced dissipation, but only at a higher concentration (10(-3) M). The combination of 2-(2-aminoethyl)pyridine and dimaprit produces a histamine-like effect at lower concentrations (10(-5) and 10(-4) M). The effects of histamine are blocked by either the H1 antagonists diphenhydramine and pyrilamine or the H2 antagonists cimetidine and SKF 93479. The results suggest that the effect of histamine on HCO-3-induced dissipation of a pHi in gastric mucosal surface cells is mediated through a coordinated mechanism involving both H1 and H2 receptor sites.  相似文献   

16.
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO(2), non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high DeltapH to regulate photosynthesis.  相似文献   

17.
18.
Simon Hald  Dario Leister  Giles N. Johnson 《BBA》2008,1777(9):1173-1183
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO2, non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high ΔpH to regulate photosynthesis.  相似文献   

19.
During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.  相似文献   

20.
Photosynthesis Research - The proton motive force (PMF) across the chloroplast thylakoid membrane that is generated by electron transport during photosynthesis is the driving force for ATP...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号