首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.  相似文献   

2.
Smurf2 is an E3 ubiquitin ligase that drives degradation of the transforming growth factor-beta receptors and other targets. Recognition of the receptors by Smurf2 is accomplished through an intermediary protein, Smad7. Here we have demonstrated that the WW3 domain of Smurf2 can directly bind to the Smad7 polyproline-tyrosine (PY) motif. Of particular interest, the highly conserved WW domain binding site Trp, which interacts with target PY motifs, is a Phe in the Smurf2 WW3 domain. To examine this interaction, the solution structure of the complex between the Smad7 PY motif region (ELESPPPPYSRYPMD) and the Smurf2 WW3 domain was determined. The structure reveals that, in addition to binding the PY motif, the WW3 domain binds six residues C-terminal to the PY motif (PY-tail). Although the Phe in the WW3 domain binding site decreases affinity relative to the canonical Trp, this is balanced by additional interactions between the PY-tail and the beta1-strand and beta1-beta2 loop of the WW3 domain. The interaction between the Smurf2 WW3 domain and the Smad7 PY motif is the first example of PY motif recognition by a WW domain with a Phe substituted for the binding site Trp. This unusual interaction allows the Smurf2 WW3 domain to recognize a subset of PY motif-containing proteins utilizing an expanded surface to provide specificity.  相似文献   

3.
Replacement of conserved amino acid residues during evolution of proteins can lead to divergence and the formation of new families with novel functions, but is often deleterious to both protein structure and function. Using the WW domain, we experimentally examined whether and to what degree second-site mutations can compensate for the reduction of function and loss of structure that accompany substitution of a strictly conserved amino acid residue. The W17F mutant of the WW domain, with substitution of the most strictly conserved Trp residue, is known to lack a specific three-dimensional structure and shows reduced binding affinity in comparison to the wild type. To obtain second-site revertants, we performed a selection experiment based on the proline-rich peptide (PY ligand) binding affinity using the W17F mutant as the initial sequence. After selection by ribosome display, we were able to select revertants that exhibited a maximum ninefold higher affinity to the PY ligand than the W17F mutant and showed an even better affinity than the wild type. In addition, we found that the functional restoration resulted in increased binding specificity in selected revertants, and the structures were more compact, with increased amounts of secondary structure, in comparison to the W17F mutant. Our results suggest that the defective structure and function of the proteins caused by mutations in highly conserved residues occurring through divergent evolution not only can be restored but can be further improved by compensatory mutations.  相似文献   

4.
The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease.  相似文献   

5.
CopC is a periplasmic copper Chaperone protein that has a β‐barrel fold and two metal‐binding sites distinct for Cu(II) and Cu(I). In the article, four mutants (Y79F, Y79W, Y79WW83L, Y79WW83F) were obtained by site‐directed mutagenesis. The far‐UV CD spectra of the proteins were similar, suggesting that mutations did not bring any significant changes in secondary structures. Meanwhile the effects of mutations on the protein's function were manifested by Cu(II) binding. Fluorescence lifetime measurement and quenching of tryptophan fluorescence by acrylamide and KI showed that the microenvironment around Trp83 was more hydrophobic than that around Tyr79 in apoCopC. Unfolding experiments induced by guanidinium chloride (GdnHCl), urea provided the conformational stability of each protein. The Δ<ΔG0element> obtained using the model of structural elements was used to show the role of Tyr79 and Trp83. On the one hand, the <ΔG0element> induced by urea for Y79F, Y79W have a loss of 6.51, 2.03 kJ/mol, respectively, compared with apoCopC, proving that replacement of Tyr79 by Phe or Trp all decreased the protein stability, meaning that the hydrogen bonds interactions between Tyr79 and Thr75 played an important role in stabilizing apoCopC. On the other hand, the <ΔG0element> induced by urea for Y79WW83L have a loss of 11.44 kJ/mol, but for Y79WW83F did a raise of 1.82 kJ/mol compared with Y79W. The replacement of Trp83 by Phe and Leu yields opposite effects on protein stability, which suggested that the aromatic ring of Trp83 was important in maintaining the hydrophobic core of apoCopC.  相似文献   

6.
The single mutation L30 K in the Hu-Yap65 WW domain increased the stability of the complex with the peptide GTPPPPYTVG (K(d)=40(+/-5) microM). Here we report the refined solution structure of this complex by NMR spectroscopy and further derived structure-activity relationships by using ligand peptide libraries with truncated sequences and a substitution analysis that yielded acetyl-PPPPY as the smallest high-affinity binding peptide (K(d)=60 microM). The structures of two new complexes with weaker binding ligands chosen based on these results (N-(n-octyl)-GPPPYNH(2) and Ac-PLPPY) comprising the wild-type WW domain of Hu-Yap65 were determined. Comparison of the structures of the three complexes were useful for identifying the molecular basis of high-affinity: hydrophobic and specific interactions between the side-chains of Y28 and W39 and P5' and P4', respectively, and hydrogen bonds between T37 (donnor) and P5' (acceptor) and between W39 (donnor) and T2' (acceptor) stabilize the complex.The structure of the complex L30 K Hu-Yap65 WW domain/GTPPPPYTVG is compared to the published crystal structure of the dystrophin WW domain bound to a segment of the beta-dystroglycan protein and to the solution structure of the first Nedd4 WW domain and its prolin-rich ligand, suggesting that WW sequences bind proline-rich peptides in an evolutionary conserved fashion. The position equivalent to T22 in the Hu-Yap65 WW domain sequence is seen as responsible for differentiation in the binding mode among the WW domains of group I.  相似文献   

7.
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.  相似文献   

8.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

9.
Using the human Pin1 WW domain (hPin1 WW), we show that replacement of two nearest neighbor non-hydrogen-bonded residues on adjacent beta-strands with tryptophan (Trp) residues increases beta-sheet thermodynamic stability by 4.8 kJ mol(-1) at physiological temperature. One-dimensional NMR studies confirmed that introduction of the Trp-Trp pair does not globally perturb the structure of the triple-stranded beta-sheet, while circular dichroism studies suggest that the engineered cross-strand Trp-Trp pair adopts a side-chain conformation similar to that first reported for a designed "Trp-zipper" beta-hairpin peptide, wherein the indole side chains stack perpendicular to each other. Even though the mutated side chains in wild-type hPin1 WW are not conserved among WW domains and compose the beta-sheet surface opposite to that responsible for ligand binding, introduction of the cross-strand Trp-Trp pair effectively eliminates hPin1 WW function as assessed by the loss of binding affinity toward a natural peptide ligand. Maximizing both thermodynamic stability and the domain function of hPin1 WW by the above mentioned approach appears to be difficult, analogous to the situation with loop 1 optimization explored previously. That introduction of a non-hydrogen-bonded cross-strand Trp-Trp pair within the hPin1 WW domain eliminates function may provide a rationale for why this energetically favorable pairwise interaction has not yet been identified in WW domains or any other biologically evolved protein with known three-dimensional structure.  相似文献   

10.
11.
Two periplasmic binding proteins of E. coli, the leucine specific-binding protein (LS) and leucine-isoleucine-valine binding protein (LIV), have high similarity in their structure and function, but show different substrate specificity. A key difference between these proteins is residue 18 in the binding pocket, a tryptophan residue in the LS and a tyrosine residue in the LIV. To examine the role of this residue in binding specificity, we used fluorescence and (19)F NMR to monitor ligand binding to three mutants: LSW18Y, LSW18F and LIVY18W. We observed leucine binding to all proteins. LS binds L-phenylalanine but the mutation from Trp to Tyr or Phe disallows this ligand and expands the binding repertoire to L-isoleucine and L-valine. The LIVY18W mutant still retains the ability to bind L-isoleucine and also binds L-phenylalanine.  相似文献   

12.
Beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, adopts an immunoglobulin domain fold in its native state. Although beta2-m has Trp residues at positions 60 and 95, both are located near the surface of the domain. Hence, beta2-m does not have a conserved Trp common to other immunoglobulin domains, which is buried in close proximity to the disulfide bond. To study the structure of amyloid fibrils in relation to their native fold, we prepared a series of Trp mutants. Trp60 and Trp95 were both replaced with Phe, and a single Trp was introduced at various positions. Among various mutants, W39-beta2-m, in which a Trp was introduced at the position corresponding to the conserved Trp, exhibited a remarkable quenching of fluorescence in the native state, as observed for other immunoglobulin domains. An x-ray structural analysis revealed that W39-beta2-m assumes the native fold with Trp39 located in the vicinity of the disulfide bond. Comparison of the fluorescence spectra of various mutants for the native and fibrillar forms indicated that, while the Trp residues introduced in the middle of the beta2-m sequence tend to be buried in the fibrils, those located in the C-terminal region are more exposed. In addition, the fluorescence spectra of fibrils prepared at pH 2.5 and 7.0 revealed a large difference in the fluorescence intensity for W60-beta2-m, implying a major structural difference between them.  相似文献   

13.
A continuous-flow mixing device with a dead time of 100 micros coupled with intrinsic tryptophan and 1-anilinonaphthalene-8-sulfonate (ANS) fluorescence was used to monitor structure formation during early stages of the folding of staphylococcal nuclease (SNase). A variant with a unique tryptophan fluorophore in the N-terminal beta-barrel domain (Trp76 SNase) was obtained by replacing the single Trp140 in wild-type SNase with His in combination with Trp substitution of Phe76. A common background of P47G, P117G and H124L mutations was chosen in order to stabilize the protein and prevent accumulation of cis proline isomers under native conditions. In contrast to WT(*) SNase, which shows no changes in tryptophan fluorescence prior to the rate-limiting folding step ( approximately 100 ms), the F76W/W140H variant shows additional changes (enhancement) during an early folding phase with a time constant of 75 micros. Both proteins exhibit a major increase in ANS fluorescence and identical rates for this early folding event. These findings are consistent with the rapid accumulation of an ensemble of states containing a loosely packed hydrophobic core involving primarily the beta-barrel domain while the specific interactions in the alpha-helical domain involving Trp140 are formed only during the final stages of folding. The fact that both variants exhibit the same number of kinetic phases with very similar rates confirms that the folding mechanism is not perturbed by the F76W/W140H mutations. However, the Trp at position 76 reports on the rapid formation of a hydrophobic cluster in the N-terminal beta-sheet region while the wild-type Trp140 is silent during this early stage of folding. Quantitative modeling of the (un)folding kinetics and thermodynamics of these two proteins versus urea concentration revealed that the F76W/W140H mutation selectively destabilizes the native state relative to WT(*) SNase while the stability of transient intermediates remains unchanged, leading to accumulation of intermediates under equilibrium conditions at moderate denaturant concentrations.  相似文献   

14.
Site-directed mutagenesis on human cytidine deaminase (CDA) was employed to mutate specifically two highly conserved phenylalanine residues, F36 and F137, to tryptophan; at the same time, the unique tryptophan residue present in the sequence at position 113 was mutated to phenylalanine. These double mutations were performed in order to have for each protein a single tryptophan signal for fluorescence studies relative to position 36 or 137. The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F, showed by circular dicroism and thermal stability an overall structure not greatly affected by the mutations. The titration of Trp residues by N-bromosuccinimide (NBS) suggested that residue W113 of the wild-type CDA and W36 of mutant F36W/W113F are buried in the tertiary structure of the enzyme, whereas the residue W137 of mutant F137W/W113F is located near the surface of the molecule. Kinetic experiments and equilibrium experiments with FZEB showed that the residue W113 seems not to be part of the active site of the enzyme whereas the Phe/Trp substitution in F36W/W113F and F137W/W113F mutant enzymes had a negative effect on substrate binding and catalysis, suggesting that F137 and F36 of the wild-type CDA are involved in a stabilizing interaction between ligand and enzyme.  相似文献   

15.
Locking the kink in the influenza hemagglutinin fusion domain structure   总被引:1,自引:0,他引:1  
We have previously identified Trp(14) as a critical residue that stabilizes the kink in the boomerang structure of the influenza fusion domain and found that cells expressing hemagglutinin with a Trp(14) to Ala mutation cannot fuse with red blood cells. However, mutating another aromatic residue, Phe(9), on the other side of the kink did not have a significant effect on fusion or the ability of the mutant fusion peptide to bind to or perturb the bilayer structure of lipid model membranes. We reasoned that Phe is not as potent to contribute to the kink as the larger Trp and that the cooperation of Phe(9) and Ile(10) might be needed to elicit the same effect. Indeed, the double mutant F9A/I10A diminished cell-cell fusion and the ability of the fusion domain to bind to and perturb lipid bilayers in a similar fashion as the W14A mutant. A structure determination of F9A in lipid micelles by solution NMR shows that F9A adopts a similarly kinked structure as wild type. Distances between the two arms of the boomerang structure of wild type, F9A, W14A, and F9A/I10A in lipid bilayers were measured by double electron-electron resonance spectroscopy and showed that the kinks of W14A and F9A/I10A are more flexible than those of wild type and F9A. These results underscore the importance of large hydrophobic residues on both sides of the kink region of the influenza hemagglutinin fusion domain to fix the angle of the boomerang structure and thereby confer fusion function to this critical domain.  相似文献   

16.
The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.  相似文献   

17.
The binding of calmodulin (CaM) to four synthetic peptide analogues of the skeletal muscle myosin light chain kinase (sk-MLCK) target sequence has been studied using 1H-NMR. The 18-residue peptide WFF is anchored to CaM via the interaction of the Trp 4 side chain with the C-domain and the Phe 17 side chain with the N-domain of the protein. A peptide corresponding to the first 10 residues (WF10) does not provide the second anchoring residue and is not long enough to span both domains of CaM. 1H-NMR spectroscopy indicates that the WF10 peptide interacts specifically with the C-domain of CaM, and the chemical shifts of the bound Trp side chain are very similar in the CaM:WF10 and CaM:WFF complexes. Binding of the C-domain of CaM to the strongly basic region around Trp 4 of this MLCK sequence may be an important step in target recognition. Comparison of 1H-NMR spectra of CaM bound to WFF, a Trp 4-->Phe analogue (FFF), or a Trp 4-->Phe/Phe 17-->Trp analogue (FFW) suggests that all three peptides bind to CaM in the same orientation, i.e., with the peptide side chain in position 4 interacting with the C-domain and the side chain in position 17 interacting with the N-domain. This indicates that a Trp residue in position 4 is not an absolute requirement for binding this target sequence and that interchanging the Trp 4 and Phe 17 residues does not reverse the orientation of the bound peptide, in confirmation of the deduction from previous indirect studies using circular dichroism (Findlay WA, Martin SR, Beckingham K, Bayley PM, 1995, Biochemistry 34:2087-2094). Molecular modeling/energy minimization studies indicate that only minor local changes in the protein structure are required to accommodate binding of the bulkier Trp 17 side chain of the FFW peptide to the N-domain of CaM.  相似文献   

18.
Protein structural changes during the photocycle of bacteriorhodopsin were examined by time-resolved ultraviolet resonance Raman (UVRR) spectroscopy. Most of the 244-nm UVRR difference signals of Trp were assigned to either Trp182 or Trp189 using the Trp182 --> Phe and Trp189 --> Phe mutants. The W17 mode of Trp182 shows a wavenumber downshift in the M(1) --> M(2) transition, indicating an increase in hydrogen bonding strength at the indole nitrogen. On the other hand, Trp189 shows Raman intensity increases of the W16 and W18 modes ascribable to an increased hydrophobic interaction. These observations suggest that the tilt of helix F, which ensures that reprotonation of the Schiff base is from the cytoplasmic side, occurs in the M(1) --> M(2) transition. In the M(2) --> N transition, the environment of Trp189 returns to the initial state, whereas the hydrophobic interaction of Trp182 decreases drastically. The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.  相似文献   

19.
The stabilities of 66 sequence variants of the human Pin1 WW domain have been determined by equilibrium thermal denaturation experiments. All 34 residues composing the hPin1 WW three‐stranded β‐sheet structure could be replaced one at a time with at least one different natural or non‐natural amino acid residue without leading to an unfolded protein. Alanine substitutions at only four positions within the hPin1 WW domain lead to a partially or completely unfolded protein—in the absence of a physiological ligand. The side chains of these four residues form a conserved, partially solvent‐inaccessible, continuous hydrophobic minicore comprising the N‐ and C‐termini. Ala mutations at five other residues, three of which constitute the ligand binding patch on the concave side of the β‐sheet, significantly destabilize the hPin1 WW domain without leading to an unfolded protein. The remaining mutations affect protein stability only slightly, suggesting that only a small subset of side chain interactions within the hPin1 WW domain are mandatory for acquiring and maintaining a stable, cooperatively folded β‐sheet structure.  相似文献   

20.
Seo MD  Park SJ  Kim HJ  Lee BJ 《FEBS letters》2007,581(1):65-70
Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号