首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutational analysis of a ras catalytic domain.   总被引:48,自引:23,他引:25       下载免费PDF全文
We used linker insertion-deletion mutagenesis to study the catalytic domain of the Harvey murine sarcoma virus v-rasH transforming protein, which is closely related to the cellular rasH protein. The mutants displayed a wide range of in vitro biological activity, from those that induced focal transformation of NIH 3T3 cells with approximately the same efficiency as the wild-type v-rasH gene to those that failed to induce any detectable morphologic changes. Correlation of transforming activity with the location of the mutations enabled us to identify three nonoverlapping segments within the catalytic domain that were dispensable for transformation and six other segments that were required for transformation. Segments that were necessary for guanosine nucleotide (GDP) binding corresponded to three of the segments that were essential for transformation; two of the three segments share strong sequence homology with other purine nucleotide-binding proteins. Loss of GDP binding was associated with apparent instability of the protein. Lesions in two of the three other required regions significantly reduced GDP binding, while small lesions in the last required region did not impair GDP binding or membrane localization. We speculate that this latter region interacts with the putative cellular target of ras. The results suggest that transforming ras proteins require membrane localization, guanosine nucleotide binding, and an additional undefined function that may represent interaction with their target.  相似文献   

2.
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants of human SMUG1 (hSMUG1), and tested their activity for uracil, hoU, hmU, fU and other bases to elucidate the catalytic and damage-recognition mechanism of hSMUG1. The functional analysis of the mutants, together with the homology modeling of the hSMUG1 structure based on that determined recently for Xenopus laevis SMUG1, revealed the crucial residues for the rupture of the N-glycosidic bond (Asn85 and His239), discrimination of pyrimidine rings through π–π stacking to the base (Phe98) and specific hydrogen bonds to the Watson–Crick face of the base (Asn163) and exquisite recognition of the C5 substituent through water-bridged (uracil) or direct (hoU, hmU and fU) hydrogen bonds (Gly87–Met91). Integration of the present results and the structural data elucidates how hSMUG1 accepts uracil, hoU, hmU and fU as substrates, but not other oxidized pyrimidines such as 5-hydroxycytosine, 5-formylcytosine and thymine glycol, and intact pyrimidines such as thymine and cytosine.  相似文献   

3.
Subsites in the S2-S4 region [Schechter & Berger (1967) Biochem. Biophys. Res. Commun. 27, 157-162] were identified in human plasma kallikrein II (EC 3.4.21.8). Kinetic constants (kcat, Km) were determined for a series of seven extended N-aminoacyl-L-arginine methyl esters based on the C-terminal sequence of bradykinin (-Pro-Phe-Arg) or (Gly)n-Arg. With these substrates it was found that deacylation of the enzyme was rate-limiting. It was possible to infer that L-proline at residue P3 interacted with subsite S3 of the enzyme and L-phenylalanine at residue P2 interacts hydrophobically with subsite S2 in addition to hydrogen-bonded interactions with this subsite region. By comparison with the results of a similar study with human plasma kallikrein I, it is observed that although broadly similar subsite interactions occur between the two enzyme forms, the rate of deacylation of kallikrein II is approx. 35% of that observed for kallikrein I, and the latter form is up to ten times more active (in terms of kcat./Km) than kallikrein II.  相似文献   

4.
Large deletion and small insertion mutations in the adenylyl cyclase gene of Saccharomyces cerevisiae were used to map regions required for activation by RAS protein in vitro. The amino-terminal 605 amino acids were found to be dispensable for responsiveness to RAS protein. All other deletions in adenylyl cyclase destroyed its ability to respond to RAS. Small insertion mutations within the leucine-rich repeat region also prevented RAS responsiveness, while other insertions did not.  相似文献   

5.
The activity of tyrosinase, the rate-limiting enzyme for melanin synthesis, is higher in Black skin melanocytes than in melanocytes derived from Caucasian skin. This variation in enzyme activity is not due to differences in tyrosinase abundance or tyrosinase gene activity, but, rather, is due to differences in the catalytic activity of preexisting tyrosinase. In melanocytes, tyrosinase is localized to the membrane of melanosomes and in Caucasian melanocytes the melanosome-bound enzyme is largely inactive. Conversely, in melanosomes of Black melanocytes, tyrosinase has high catalytic activity. Treatment of Caucasian melanocytes with the lysosomotropic compound ammonium chloride or with the ionophores nigericin and monensin results in a rapid and pronounced increase in tyrosinase activity. This increase occurs without any change in tyrosinase abundance, indicating that these compounds are increasing the catalytic activity of preexisting enzyme. Inhibition of the vacuolar proton pump V-ATPase by treatment of Caucasian melanocytes with bafilomycin also increases tyrosinase activity. In contrast to the 10-fold increase in tyrosinase observed in Caucasian melanocytes, neither ammonium chloride, monensin, nigericin, nor bafilomycin is able to increase the already high level of tyrosinase activity present in melanosomes of melanocytes derived from Black skin. Finally, staining of Caucasian melanocytes with the fluorescent weak base acridine orange shows that melanosomes of Caucasian, but not Black, melanocytes are acidic organelles. These data support a model for racial pigmentation that is based on differences in melanosome pH in Black and Caucasian skin types. The models suggests that melanosomes of Caucasian melanocytes are acidic, while those of Black individuals are more neutral. Since tyrosinase is inactive in an acid environment, the enzyme is largely inactive in Caucasian melanosomes but fully active in Black melanosomes.  相似文献   

6.
Phenoloxidase activity was found in lichenized ascomycetes belonging to different taxonomic groups. Most of the epigeic and epilithic lichens of the order Peltigerales were found to possess both laccase and tyrosinase activities; the lichens of the order Lecanorales possessed only laccase activity, which was an order of magnitude lower than that of Peltigerales. Water-soluble phenoloxidases were present only in peltigerous lichens: activity that could be washed out from intact thalli comprised 10% of that released from disrupted thalli. The activity of the peltigerous lichens and the release of soluble phenoloxidases into the medium increased when the thalli were rehydrated quickly. In some of the lichens tested, the phenoloxidase activity was stimulated by desiccation-rehydration cycles. The oxidases discovered may play an important role in the phenolic metabolism of lichens and be involved in the biochemical reaction of humus synthesis during primary soil formation, which may be a previously unknown geochemical function of these symbiotic microorganisms.  相似文献   

7.
Phenoloxidase activity was found in lichenized ascomycetes belonging to different taxonomic groups. Most of the epigeic and epilithic lichens of the order Peltigerales were found to possess both laccase and tyrosinase activities; the lichens of the order Lecanorales possessed only laccase activity, which was an order of magnitude lower than that of Peltigerales. Water-soluble phenoloxidases were present only in peltigerous lichens: activity that could be washed out from intact thalli comprised 10% of that released from disrupted thalli. The activity of the peltigerous lichens and the release of soluble phenoloxidases into the medium increased when the thalli were rehydrated quickly. In some of the lichens tested, the phenoloxidase activity was stimulated by desiccation-rehydration cycles. The oxidases discovered may play an important role in the phenolic metabolism of lichens and be involved in the biochemical reaction of humus synthesis during primary soil formation, which may be a previously unknown geochemical function of these symbiotic microorganisms.  相似文献   

8.
Mutational mapping of a cloned adenovirus origin   总被引:5,自引:0,他引:5  
We have developed a standardized, quantitative assay to study the function of a cloned adenovirus origin. We have shown that the adenovirus origin is located within the first 20 bp of the adenovirus inverted terminal repetition (ITR), a region containing a sequence conserved among human, simian, murine, and avian adenoviruses. Deletions removing or penetrating from either direction into the conserved sequence inactivated the cloned adenovirus origin. A point mutation within the conserved sequence impaired the adenovirus origin, but point mutations outside the conserved sequence had no effect. These results strongly suggest that the conserved sequence within the first 20 bp of the ITR alone constitutes the adenovirus origin (ori) signal.  相似文献   

9.
10.
RFLP for TaqI at the human tyrosinase locus.   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

11.
We synthesized benzoate ester derivatives of kojic acid with and without adamantane moiety. Benzoate derivatives 2a-e that did not contain an adamantane moiety showed potent tyrosinase inhibitory activities. However, depigmenting activity was not noted in a cell-based assay. Contrasting results were obtained for benzoate derivatives (3a-e) containing an adamantane moiety. Compounds 3a-e showed potent depigmenting activities without tyrosinase inhibitory activities. To the best of our knowledge, this is the first study showing the depigmenting activities of kojic acid derivatives without tyrosinase inhibitory activities.  相似文献   

12.
13.
New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase (EC 1.14.18.1) have been developed. The tyrosine hydroxylase assay uses L-[carboxy-14C]tyrosine as the substrate, 14CO2 is released from the products of the hydroxylation and further metabolism of L-[carboxy-14C]tyrosine by incubation with ferricyanide, and measured radiometrically. D-Dopa is a preferable cofactor to L-dopa for the assay. Dopa oxidase activity is measured spectrophotometrically. Dopaquinone, produced on the oxidation of L-dopa, reacts with Besthorn's hydrazone (3-methyl-2-benzothiazolinone hydrazone) to form a pink pigment with an absorbance maximum at 505 nm. Details of the optimisation of conditions for the assays and their specificities for the two enzyme activities are described.  相似文献   

14.
O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of O-linked GlcNAc to serine/threonine residues of a variety of target proteins, many of which have been implicated in such diseases as diabetes and neurodegeneration. The addition of O-GlcNAc to proteins occurs in response to fluctuations in cellular concentrations of UDP-GlcNAc, which result from nutrients entering the hexosamine biosynthetic pathway. However, the molecular mechanisms involved in sugar nucleotide recognition and transfer to protein are poorly understood. We employed site-directed mutagenesis to target potentially important amino acid residues within the two conserved catalytic domains of OGT (CD I and CD II), followed by an in vitro glycosylation assay to evaluate N-acetylglucosaminyltransferase activity after bacterial expression. Although many of the amino acid substitutions caused inactivation of the enzyme, we identified three amino acid residues (two in CD I and one in CD II) that produced viable enzymes when mutated. Structure-based homology modeling revealed that these permissive mutants may be either in or near the sugar nucleotide-binding site. Our findings suggest a model in which the two conserved regions of the catalytic domain, CD I and CD II, contribute to the formation of a UDP-GlcNAc-binding pocket that catalyzes the transfer of O-GlcNAc to substrate proteins. Identification of viable OGT mutants may facilitate examination of its role in nutrient sensing and signal transduction cascades.  相似文献   

15.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.  相似文献   

16.
17.
The albino (tyrosinase, Tyrc), brown (tyrosinase-related protein 1, Tyrp1b) and slaty (tyrosinase-related protein 2, tyrp2slt) loci are all involved in the regulation of melanogenesis. Phenotypes of inbred mice mutant at two or more of these loci are not always explicable by simple summation of the established or suspected catalytic functions of the gene products. These phenotypes suggest that relationships among the proteins extend beyond the obvious fact that they catalyze different steps in the same melanogenic pathway, and that they may also interact intimately in such a way that a mutation in one impacts the function of the other(s). Previous studies have attributed catalytic activities to each member of this trio; however, it has been difficult to study the proteins individually, either in vivo or in tissues or cells. Therefore, we undertook to transfect the genes, in revealing combinations, into COS-7 cells (which have no melanogenic apparatus of their own) to clarify the interacting functions of their encoded proteins. Specifically, we attempted to evaluate the effects of Tyrp1 and Tyrp2 proteins on tyrosinase protein. We report evidence that Tyrp1 stabilizes tyrosinase, confirming previous observations, and, in addition, demonstrate that Tyrp1 decreases tyrosinase activity. By contrast, Tyrp2 increases tyrosinase activity by stabilizing the protein. We conclude that both Tyrp1 and Tyrp2, in addition to other catalytic functions they may possess, act together to modulate tyrosinase activity.  相似文献   

18.
Human monoamine (M) form and simple phenol (P) form phenol sulfotransferases (PSTs) are greater than 93% identical in their primary sequences and yet display distinct substrate specificities and other enzymatic properties. Through the generation and characterization of a series of chimeric PSTs, we have previously demonstrated two highly variable regions within their sequences to be responsible for determining their substrate phenotypes (Sakakibara, Y., Takami, Y., Nakayama, T., Suiko, M., and Liu, M.-C. (1998) J. Biol. Chem. 273, 6242-6247). By employing the site-directed mutagenesis technique, the present study aims to identify and quantitatively evaluate the specific amino acid residues critical to the substrate binding and catalysis in these two enzymes. Twelve mutated M-PSTs and seven mutated P-PSTs were generated, expressed, and purified. Enzymatic characterization showed that, of the twelve mutated M-PSTs, mutations at residues Asp-86, Glu-89, and Glu-146 resulted in a dramatic decrease in V(max)/K(m) with dopamine as substrate, being greater than 450 times for the D86A/E89I/E146A mutated M-PST. With p-nitrophenol as substrate, the V(max)/K(m) determined for the D86A/E89I/E146A-mutated M-PST increased more than 25 times and approached that determined for the wild-type P-PST. These results indicated that the concerted action of the three mutated residues (D86A, E89I, and E146A) is sufficient for the conversion of the substrate phenotype of M-PST to that of P-PST. Among the mutated P-PSTs, the I89E- and A146E-mutated P-PSTs displayed considerable deviations in V(max)/K(m) with dopamine or p-nitrophenol as substrate. No corresponding changes, however, were detected with the opposite compound as substrate. These results indicated that, in contrast to M-PST, mutations at Ala-86, Ile-89, and Ala-146 to the corresponding residues in M-PST are not sufficient for rendering the change of P-PST substrate phenotype to that of M-PST. For both M-PSTs and P-PSTs, mutations at Lys-48 or His-108 led to the loss of sulfotransferase activities, indicating their importance in the catalytic mechanism.  相似文献   

19.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

20.
The first 4 residues of parathyroid hormone (PTH) are highly conserved in evolution and are important for biological activity. We randomly mutated codons 1-4 of human PTH (hPTH) with degenerate oligonucleotides and, after expression in COS cells, screened the mutants for receptor binding and cAMP-stimulating activity using ROS 17/2.8 cells. This survey identified Glu4 and Val2 as important determinants of receptor binding and activation, respectively. Positions 1 and 3 were more tolerant of substitutions indicating that these sites are less vital to hormone function. Activities of synthetic hPTH(1-34) analogs further demonstrated the importance of positions 2 and 4. The binding affinity of [Ala4,Tyr34] hPTH(1-34)NH2 was 100-fold reduced relative to [Tyr34]hPTH(1-34)NH2 (Kd values = 653 +/- 270 and 4 +/- 1 nM, respectively), and [Arg2, Tyr34]hPTH(1-34)NH2 was a weak partial agonist which bound well to the ROS cell receptor (Kd = 31 +/- 10 nM). The Arg2 analog was nearly as potent as PTH(3-34) as an in vitro PTH antagonist in osteoblast derived cells. However, unlike PTH(3-34), [Arg2]PTH was a full agonist in opossum kidney (OK) cells. These observations suggest that the activation domains of the OK and ROS cell PTH receptors are different. Thus, amino-terminal PTH analogs may be useful as probes for distinguishing properties of PTH receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号