首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of guanine hydrobromide monohydrate, in which the guanine base is protonated at N7, were X-irradiated at 8 and 65 K. Using K-band ESR, ENDOR, and field-swept-ENDOR (FSE) techniques, the crystals were studied between 8 K and room temperature. There was evidence for five different radicals, RI-RV, immediately following irradiation at 8 or 65 K. RI was identified as the O6-protonated anion. It decayed near room temperature with no detectable successor. RII was identified as the N7-deprotonated cation, and decayed near 130 K. RIII is thought to be a ring-opened product formed by C8-N9 bond rupture; upon warming, it decayed at 150 K. RIV is the well-known C8 H-addition radical. These four radicals have been observed previously in the hydrochloride salt of guanine monohydrate. RV is novel, however, with magnetic characteristics consistent with those of the product formed by net OH addition to C5 of the unsaturated C4-C5 bond. It is characterized by four alpha-proton couplings indicating pi-electron spin as follows: 13% at C8; 11% at N7; and 12% at N10. RV decayed between 240 and 255 K with no detectable successor. Upon further warming, very weak resonance lines due to additional, unidentified radicals were observed. A comparison of these results with those obtained from other systems containing N7-protonated guanine bases demonstrates the effect of the environment on the primary radical formation.  相似文献   

2.
M Kuwabara  W Hiraoka  F Sato 《Biochemistry》1989,28(25):9625-9632
A method combining spin trapping, ESR, and HPLC was employed to obtain evidence for the formation of sugar radicals in OH-attacked TMP with special emphasis on the detection of strand-break precursors of DNA. OH radicals were produced by irradiating an N2O-saturated aqueous solution with X-rays. When an N2O-saturated aqueous solution containing TMP and a spin trapping reagent, MNP, was irradiated with X-rays, it was estimated on the basis of theoretical calculations using rate constants that 94% of the TMP radicals were induced by OH radicals. Since several spin adducts between TMP radicals and MNP, as well as the byproducts of the spin trapping reagent itself, were produced, reverse-phase HPLC was used to separate them. The presence of six spin adducts was confirmed by ESR examination. Further examination of these spin adducts by UV absorbance spectrophotometry showed the presence of a chromophore at 260 nm in three adducts. Since a gradual increase in the release of unaltered base from these adducts was observed when they were allowed to stand for 0-22 h at room temperature, they could be regarded as the spin adducts of sugar radicals and MNP. ESR spectra from the spin adducts were consistent with hydrogen abstraction radicals at the C1', C4', and C5' positions of the sugar moiety. These radicals appeared to be precursors of AP sites and strand breaks. In addition to these spin adducts, ESR spectra that were consistent with the spin adducts of base radicals (the C5 and C6 radicals) and MNP were observed.  相似文献   

3.
Free radical metabolite of uric acid   总被引:2,自引:0,他引:2  
Uric acid has previously been shown to act as a water-soluble antioxidant. Although the antioxidant activity of uric acid has been attributed to its ability to scavenge free radicals, the one-electron uric acid oxidation product of such a scavenging reaction has not been detected. It order to determine whether a free radical metabolite of uric acid could be formed via one-electron redox processes, we oxidized uric acid with potassium permanganate, horseradish peroxidase/hydrogen peroxide, and hematin/hydrogen peroxide systems. With the use of the rapid-mixing, continuous-flow electron spin resonance technique, we were able to detect the urate anion free radical in all three radical-generating systems. Based on N15-isotopic-labeling experiments, we show that the unpaired electron of this radical is located primarily on the five-membered ring of the purine structure. We were also able to demonstrate that this radical could be scavenged by ascorbic acid.  相似文献   

4.
Single crystals of deoxycytidine hydrochloride (CdR.HCl) have been X-irradiated at 10 K with doses up to about 150 kGy and studied using 24 GHz (K-band) EPR, ENDOR and FSE spectroscopy. In this system, the cytosine base is protonated at the N3 position. Nine different radicals were characterized and identified. Three of these are ascribed to three versions of the one-electron reduced species, probably differing in their protonation state. Radicals formed by net hydrogen addition to the cytosine C5 and C6 positions were observed at 10 K. The hydrogen-abstraction radical at the deoxyribose C1' position most probably results from initial oxidation of the base. The remaining radical species are all localized to the sugar moiety, representing products formed by net hydrogen abstraction from three of the five available carbons of the deoxyribose sugar. The lack of base-centered oxidation products as well as the structures of the one-electron reduced species is rationalized by considering the specific proton donor-acceptor properties of this crystalline lattice in comparison with similar systems.  相似文献   

5.
Single crystals of anhydrous inosine were studied subsequent to exposure to high and low doses of X radiation at 10 K using K-band, EPR, ENDOR, and field-swept-ENDOR (FSE) techniques. Immediately following high radiation doses at 10 K at least eight different radicals, RI-RVIII, were observed. All radicals, except for RVIII, were also observed at low doses, but the relative yields varied with the radiation doses. RI, which decayed with no observable successor at about 65 K, has magnetic characteristics similar to those expected for the hypoxanthine base cation. RII, the dominating radical at low radiation doses, exhibits only one hyperfine coupling amenable for ENDOR analysis. From the nature of this coupling and the EPR and FSE characteristics of the resonance, it is suggested that RII is formed by addition of a neighbor sugar fragment to the C2 position of a hypoxanthine base, forming a C2-O5'-C5' ester bond. RII is unstable and decayed at about 60 K without any detectable successor. RIII and RIV are the C2 and C8 H-addition radicals, respectively. These species are formed in minor amounts after irradiation at low temperatures, and they are the only observable radicals left at room temperature. Two sugar-centered radicals, RV and RVI, are formed by net H-abstraction from the C4' and C5' positions, respectively. These radicals dominate the EPR spectra after high radiation doses at low temperatures. A transformation from RV into RIII, the C2 H-adduct, started at about 80 K. Similarly, a transformation of RVI into RIV started at about 210 K. Several minor species were analyzed. RVII is characterized by an alpha-coupling due to 26% spin density at C8, and RVIII is characterized by 12% pi-spin density at N1. Possible structures for these radicals are discussed.  相似文献   

6.
Short-lived free radicals produced in N2O-saturated aqueous solutions of uracil and thymine have been studied using the in situ radiolysis steady-state e.s.r. method. Radical formed in alkaline aqueous solutions by OH addition to either positions C(5) or (6) were observed. Mechanisms for the formation of transient species were derived. The spin density distribution of the unpaired electron was calculated by means of the INDO method.  相似文献   

7.
Ascorbic acid/isoascorbic acid are present as radicals at physiological pH with the unpaired electron located in the C(4) region. Since a distinction can be made between both types of radicals, the electron spin resonance technique can be used for discrimination between the epimers of vitamin C. The radical has a cyclic side-chain structure which is formed by the hydrogen bond C(3)-O ... HO-C(6) ( 2.7 kJ) and which engulfs Na+ or K+ in the case of the ascorbyl or the isoascorbyl radical, respectively. The radicals Na-ASC and K-Iso-ASC are electroneutral. Red. glutathione affects both types of radicals by restoring the original electronic configuration at C(4) without changing the electroneutral bicyclic structure. In this way, the mobile carriers Na-ASC and K-Iso-ASC can transport Na+ and K+ across membranes. Its highest efficiency is around 37 C and pH 7, that is, at physiological values. The biological importance of the side chain of vitamin C is outlined and a possible transport mechanism proposed.  相似文献   

8.
鸟嘌呤碱基与羟基自由基反应的密度泛函理论   总被引:3,自引:0,他引:3  
羟基自由基 (·OH)进攻嘌呤碱基是破坏核酸造成DNA断链损伤的重要原因之一 .采用密度泛函 (DFT)理论中B3LYP方法在 6— 31G基组水平上对鸟嘌呤 (G)受羟基自由基进攻形成的各种可能产物自由基进行几何全优化 .根据总能量、键长和自旋密度的计算结果 ,从理论上确认了C 5和C 8位加成机制 .得产物自由基G5OH·、G8OH· ,且G5OH·易与N 11位H脱水得一个更稳定的产物自由基 ,而G8OH·不易发生开环反应 ,得到与实验一致的结论 .这些稳定自由基的形成造成DNA断链损伤  相似文献   

9.
In this study, the effects of high-LET radiation on DNA were investigated and compared with the effects of gamma radiation. Hydrated DNA samples at 77 K were irradiated with argon-ion beams ((36)Ar or (40)Ar beam at energies between 60 and 100 MeV/nucleon). The individual free radicals formed were identified and their yields were investigated by electron spin resonance spectroscopy. Argon-ion irradiation resulted in lower yields of base ion radicals and higher yields of neutral radicals than gamma irradiation. A hitherto unknown species was assigned to the radical formed by C-O bond rupture at the deoxyribose C3', resulting in a sugar carbon-centered radical. A previously characterized phosphorus-centered radical was also found. The formation of each of these species was accompanied by an immediate strand break. G values, k values, and analyses for the individual yields of neutral radicals and ion radical composition for argon-ion-irradiated hydrated DNA are reported and compared to those found previously for gamma-irradiated DNA. The lower G values and k values for ion radicals and the higher fraction of neutral radicals found for argon-ion-irradiated DNA are attributed to differences in track structure inherent in the two radiations.  相似文献   

10.
A J Carmichael 《FEBS letters》1990,261(1):165-170
Vanadyl (VO2+) complexed to RNA reacts with hydrogen peroxide in a Fenton-like manner producing hydroxyl radicals (.OH). The hydroxyl radicals can be spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) forming the DMPO-OH spin adduct. In addition, in the presence of ethanol the formation of the hydroxyethyl radical adduct of DMPO (DMPO-ETOH) confirms the production of hydroxyl radicals by the RNA/VO2+ complex. When the reaction between the RNA/VO2+ complex and H2O2 is carried out in the presence of the spin trap 2-methyl-2-nitrosopropane (MNP), radicals produced in the reaction of .OH with RNA are trapped. Base hydrolysis of the MNP-RNA adducts (pH 12) followed by a reduction in the pH to pH 7 after hydrolysis is complete, yields an MNP adduct with a well-resolved ESR spectrum identical to the ESR spectrum obtained from analogous experiments with poly U. The ESR spectrum consists of a triplet of sextets (aN = 1.48 mT, a beta N = 0.25 mT and a beta H = 0.14 mT), indicating that the unpaired nitroxide electron interacts with the nuclei of a beta-nitrogen and beta-hydrogen. The results suggest that the .OH generated in the RNA/VO2+ reaction with H2O2 add to the C(5) carbon of uracil forming a C(6) carbon centered radical. This radical is subsequently spin trapped by MNP.  相似文献   

11.
X-irradiation of single crystals of 5-iododeoxyuridine (IUdR) in the temperature range 8-300 K produces mainly four different radicals which have been studied by electron spin resonance (e.s.r.) and electron nuclear double resonance (ENDOR)-spectroscopy. At low temperatures, a pi-anion is formed which shows predominantly an interaction of the unpaired electron with a proton at carbon C6 of the base (-11.8 G, -23.9 G, -4.6 G). Above 10-20 K, the anion protonates at C6 to yield a RC-I(CH2)-R' radical comprising alpha-iodo and beta-methylene proton hyperfine interactions. The primary oxidation product is an O5'-situated alkoxy radical RCH2O which shows inequivalent beta-proton couplings of about 100 G and 35 G together with a highly anisotropic g-tensor. Upon warming to 265 K, a C2'-located radical on the deoxyribose is formed which is stable at room temperature. A detailed account of its spectral features as obtained by ENDOR exhibits three different alpha-type couplings, two small beta-protons and a dipolar interaction. Other radicals, not reproducibly observed, involve a C5'-hydroxyalkyl radical and a species related to the base cation at low temperatures.  相似文献   

12.
The calculations based on the density functional theory (DFT) have been used to study the structure-activity of resveratrol in the chain reaction of autooxidation. According to the geometry obtained by using a B3LYP/6-31G**, the HOMO, LUMO of resveratrol and the spin density, the single electron distribution of the 4'- and 5-radical of resveratrol were calculated, it was found that resveratrol is a potential antioxidant. The 4'-hydroxyl group of resveratrol is more reactive than 3- and 5-positions because of the resonance effects. The dominant structure of the resveratrol radicals is a semiquinone structure which determines the stability of radicals, and the unpaired electron is mainly distributed to the O-atom and its ortho and para positions. The antioxidant activity of resveratrol is related to the spin density and the unpaired electron distribution of the O-atom.  相似文献   

13.
The molecular structure of free radicals formed in gamma-irradiated monoclinic and orthorhombic single crystals of hydrated testosterone were investigated by EPR spectroscopy. Two different types of radical were observed. In the monoclinic form, the radical arises by the loss of a hydrogen atom from the carbon atom C(2), whereas, in the orthorhombic form, it arises by addition of a hydrogen atom to the oxygen atom O(3). The hyperfine spectrum of the radical formed in the monoclinic single crystal originates from the interaction of the unpaired electron with one alpha-proton in position 2 and two non equivalent beta-protons in position 1. In the orthorhombic single crystal, we observed interaction of the unpaired electron, which is delocalized on the carbons C(3), C(4) and C(5) with one alpha-proton in position 4 and with four nonequivalent beta-protons connected with the carbon atoms C(2) and C(6). The hyperfine tensors of the coupling and the g-tensor of the radicals are given.  相似文献   

14.
We have examined the DNA damage produced by reaction of peroxyl radicals with human fibroblast DNA. DNA damage consisted of both strand breaks and base modifications. The extent of strand breaks and base modifications induced as a function of peroxyl radical concentration was determined by quantitation of fragment size distributions using denaturing glyoxal-agarose gel electrophoresis. Both strand breaks and base modifications increased in a log linear fashion with respect to peroxyl radical concentration. Oxidative base modifications were observed to occur to a greater extent than strand breaks at every concentration measured. The sequence-specific distribution of peroxyl radical induced base damage was mapped for 803 nucleotide positions using the method of ligation mediated PCR. A total of 87% of all guanine positions in the examined sequences was found to be significantly oxidized. The order of reactivity of DNA bases toward oxidation by peroxyl radicals was found to be G > C > T. Adenine is essentially unreactive. The yield of oxidative base modifications at guanines and cytosines by peroxyl radicals depends on the exact specification of 5' and 3' flanking bases in a polarity dependent manner. Every guanine in the 5'XGC3' motif was found to be oxidized, where X is any 5' neighbor. In contrast, 5' and 3' purine flanks drastically reduced the extent of peroxyl radical G oxidation. The pattern of base modification and the influence of nearest neighbors differs substantially from that previously reported for hydrogen peroxide damage mediated by low valent transition metal ions for the identical DNA sequences.  相似文献   

15.
Radiation-induced radicals in single crystals of 2'-deoxyguanosine 5'-monophosphate (5'-dGMP) at 15 K have been studied by electron spin resonance (ESR) spectroscopy. At low temperatures three radicals were analyzed in detail. The negatively charged pi anion of the guanine base completely dominated the spectra. Weaker resonances were due to an alkoxy radical with the spin density in the C3'-O3' region of the sugar moiety as well as another sugar-centered radical. The anion rapidly decayed upon exposure to uv light at 15 K or by annealing above 25 K. In both cases no successor radical was observed. The second sugar-centered radical decays at 200 K with a concomitant appearance of the resonance from the C8 H-addition radical. By annealing at 295 K the latter resonance was the only one observed. After irradiation at 295 K, however, an additional resonance from a sugar-centered radical, which has been analyzed previously by B. Rakvin and J. N. Herak (Radiat. Res. 88, 240-250 (1981)) was observed. A reinvestigation of this resonance was performed.  相似文献   

16.
Aqueous N2O/O2-saturated solutions of poly(U) were irradiated at 0 degrees C and the release of unaltered uracil determined. Immediately after irradiation G(uracil release) was 1.5 which increased to a value of 5.3 +/- 0.3 upon heating to 95 degrees C. Thereby all of the organic hydroperoxides (G = 6.8 +/- 0.7) and some of the hydrogen peroxide (G = 1.7 +/- 0.2) was destroyed leaving G(peroxidic material; mainly hydrogen peroxide) = 1.0 +/- 0.7. G(chromophore loss) = 8-11 was measured immediately after irradiation, but no increase was observed upon heating. Addition of iodide destroyed the hydroperoxides and caused immediate base release to rise to G = 4 and further heating brought the value to that observed in the absence of iodide. In contrast, on reducing the hydroperoxides with NaBH4, immediate uracil release rose to only G = 2.8 and no further increase was observed on heating. A major product (G = 2.7) is carbon dioxide. There are also osazone-forming compounds produced (G = 2.7), all of which are originally bound to poly(U). Heating in acid solutions, as is required for this test, releases glycoladehyde-derived osazone (G = 0.8) and further unidentified low molecular weight material (G = 0.9). It is concluded that the primary radicals which cause these lesions are the base OH adduct radicals. In the presence of oxygen these are converted into the corresponding peroxyl radicals which abstract an H atom from the sugar moiety. In the course of this reaction base-hydroperoxides are formed. However, such base hydroperoxides cannot be the only organic hydroperoxides, but some (G congruent to 2.5) sugar-hydroperoxides must be formed as indicated by the increase in base release by the addition of iodide. It is speculated that a sugar-hydroperoxide located at C(3') is reduced by iodide to a carbonyl function at C(3'), a lesion that releases the base, while reduction with NaBH4 reduces it to an alcohol function at C(3') thus preventing base release.  相似文献   

17.
Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.  相似文献   

18.
Following X irradiation of adenine.HCl.H2O at 10 K, evidence for five distinct radical products was present in the EPR/ENDOR. (In both adenine.HCl.1/2H2O and adenosine.HCl, the adenine base is present in a cationic form as it is protonated at N1). From ENDOR data, radical R1, stable at temperatures up to 250 K, was identified as the product of net hydrogen loss from N1. This product, evidently formed by electron loss followed by proton loss, is equivalent to the radical cation of the neutral adenine base. Radical R2, unstable at temperatures above 60 K, was identified as the product of net hydrogen addition to N3, and evidently formed by electron addition followed by proton addition. Radicals R3-R5 could not be identified with certainty. Similar treatment of adenosine.HCl provided evidence for six identifiable radical products. Radical R6, stable to ca. 150 K, was identified as the result of net hydrogen loss from the amino group, and evidently was the product of electron loss followed by proton loss. Radical R7 was tentatively identified as the product of net hydrogen addition to C4 of the adenine base. Radical R8 was found to be the product of net hydrogen addition to C2 of the adenine base, and R9 was the product of net hydrogen addition to C8. Radical R10 was identified as the product of net hydrogen abstraction from C1' of the ribose, and R11 was an alkoxy radical formed from the ribose. With the exception of R11, all products were also found following irradiation at 65 K. Only radical R8 and R9 were stable at room temperature. Most notable is the different deprotonation behavior of the primary electron-loss products (radical R1 vs. R6) and the different protonation behavior of the primary electron-gain products (radical R2 vs. no similar product in adenosine.HCl). The major structural difference in the two crystals is the electrostatic environment of the adenine base. Therefore, this study provides further evidence that environmental influences are important in determining proton transfer processes.  相似文献   

19.
The ability of horseradish peroxidase (E.C. 1.11.1.7. Donor: H2O2 oxidoreductase) to catalytically oxidize 2-deoxyribose sugars to a free radical species was investigated. The ESR spin-trapping technique was used to denionstrate that free radical species were formed. Results with the spin trap 3.5-dibronio-4-nitrosoben-zene sulphonic acid showed that horseradish peroxidase can catalyse the oxidation of 2-deoxyribose to produce an ESR spectrum characteristic of a nitroxide radical spectrum. This spectrum was shown to be a composite of spin adducts resulting from two carbon-centered species, one spin adduct being characterized by the hyperfine coupling constants aN = 13.6GandaHβ = 11.0G, and the other by aN = 13.4G and aH = 5.8 G. When 2-deoxyribose-5-phosphate was used as the substrate, the spectrum produced was found to be primarily one species characterized by the hyperfine coupling constants aN = 13.4G and aH= 5.2. All the radical species produced were carbon-centered spin adducts with a β hydrogen, suggesting that oxidation occurred at the C(2) or C(5) moiety of the sugar. Interestingly, it was found that under the same experimental conditions, horseradish peroxidase apparently did not catalyze the oxidation of either 3-deoxyribose or D-ribose to a free radical since no spin adducts were found in these cases.

It can be readily seen that 2-deoxyribose and 2-deoxyribose-5-phosphate can be oxidized by HRP/H2O2 to form a free radical species that can be detected with the ESR spin-trapping technique. There are two probable sites for the formation of a CH type radical on the 2-deoxyribose sugar, these being the C(2) and the C(5) carbons. The fact that there is a species produced from 2-deoxy-ribose, but not 2-deoxy-ribose-5-phosphate, suggests that there is an involvement of the C(5) carbon in the species with the 1 1.0G β hydrogen. In the spectra formed from 2-deoxy-ribose, there is a big difference in the hyperfine splitting of the β hydrogens, suggesting that the radicals are formed at different carbon centers, while the addition of a phosphate group to the C(5) carbon seems to inhibit radical formation at one site. In related work, the chemiluminescence of monosaccharides in the presence of horseradish peroxidase was proposed to be the consequence of carbon-centered free radical formation (10).  相似文献   

20.
Single crystals of guanine hydrochloride monohydrate, guanine hydrochloride dihydrate and anhydrous guanine dihydrochloride, doped with thioguanine, were irradiated with X and gamma rays. In all three systems the dominant radicals were associated with thioguanine. In the former two systems the stabilized species is the thiyl radical, formed by initial loss of an electron at some of the guanines in the crystal lattice, followed by hole migration to thioguanine and subsequent deprotonation of the radical formed. In the anhydrous guanine(thioguanine) dihydrochloride, that process is followed by acquisition of a chlorine ion. In the guanine hydrochloride monohydrate and guanine hydrochloride dihydrate lattices, systems of interacting closely spaced stacked bases and strings of chloride ions might support the migration of electrons and/or holes. In anhydrous guanine dihydrochloride, neither the bases nor the Cl- ions alone are capable of providing the means for the long-range electron, energy and spin transfer. It is the interchangeable sequence of the charged bases and the Cl- ions that makes the supporting strings or networks. The ultimate chlorination of the thioguanine-centered electron-loss radicals depends mainly on the availability of the Cl- ions and the space for their accommodation in the vicinity of the sulfur atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号