共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathogenic bacteria elicit protective responses to oxidative and nitrosative stresses. Although such responses are generally distinct, it was recently reported in Mycobacterium tuberculosis that catalase-peroxidase (KatG), a classical defence against peroxides, also exhibits peroxynitritase activity. Here, the katG gene from Salmonella Typhimurium was cloned and protein purified and characterised. An increase in the rate of decomposition of peroxynitrite was observed for KatG from the enterobacterium with a second-order rate constant of 4.2 × 104 M−1 s−1 at pH 7.4, 25 °C. This enzyme was able to reduce dihydrorhodamine oxidation by peroxynitrite to ∼83%. Given the peroxynitritase activity demonstrated here it is likely that KatG may play a wider role in the detoxification of oxidative stresses than previously thought. 相似文献
2.
Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates. 相似文献
3.
Chouchane S Girotto S Kapetanaki S Schelvis JP Yu S Magliozzo RS 《The Journal of biological chemistry》2003,278(10):8154-8162
Mycobacterium tuberculosis catalase-peroxidase (KatG) is a heme enzyme considered important for virulence, which is also responsible for activation of the anti-tuberculosis pro-drug isoniazid. Here, we present an analysis of heterogeneity in KatG heme structure using optical, resonance Raman, and EPR spectroscopy. Examination of ferric KatG under a variety of conditions, including enzyme in the presence of fluoride, chloride, or isoniazid, and at different stages during purification in different buffers allowed for assignment of spectral features to both five- and six-coordinate heme. Five-coordinate heme is suggested to be representative of "native" enzyme, since this species was predominant in the enzyme examined immediately after one chromatographic protocol. Quantum mechanically mixed spin heme is the most abundant form in such partially purified enzyme. Reduction and reoxidation of six-coordinate KatG or the addition of glycerol or isoniazid restored five-coordinate heme iron, consistent with displacement of a weakly bound distal water molecule. The rate of formation of KatG Compound I is not retarded by the presence of six-coordinate heme either in wild-type KatG or in a mutant (KatG[Y155S]) associated with isoniazid resistance, which contains abundant six-coordinate heme. These results reveal a number of similarities and differences between KatG and other Class I peroxidases. 相似文献
4.
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis is responsible for the activation of the antitubercular drug isonicotinic acid hydrazide (INH) and is important for survival of M. tuberculosis in macrophages. Characterization of the structure and catalytic mechanism of KatG is being pursued to provide insights into drug (INH) resistance in M. tuberculosis. Site-directed mutagenesis was used to prepare the INH-resistant mutant KatG[S315T], and the overexpressed enzyme was characterized and compared with wild-type KatG. KatG[S315T] exhibits a reduced tendency to form six-coordinate heme, because of coordination of water to iron during purification and storage, and also forms a highly unstable Compound III (oxyferrous enzyme). Catalase activity and peroxidase activity measured using t-butylhydroperoxide and o-dianisidine were moderately reduced in the mutant compared with wild-type KatG. Stopped-flow spectrophotometric experiments revealed a rate of Compound I formation similar to wild-type KatG using peroxyacetic acid to initiate the catalytic cycle, but no Compound I was detected when bulkier peroxides (chloroperoxybenzoic acid, t-butylhydroperoxide) were used. The affinity of resting (ferric) KatG[S315T] for INH, measured using isothermal titration calorimetry, was greatly reduced compared with wild-type KatG, as were rates of reaction of Compound I with the drug. These observations reveal that although KatG[S315T] maintains reasonably good steady state catalytic rates, poor binding of the drug to the enzyme limits drug activation and brings about INH resistance. 相似文献
5.
Catalase-peroxidases (KatGs) are bifunctional enzymes possessing both catalase and peroxidase activities. Four crystal structures of different KatGs revealed the presence of a novel Met-Tyr-Trp cross-link which has been suggested to impart catalatic activity to the KatGs. To decipher the individual roles of the two cross-links in the Met-Tyr-Trp adduct, we have focused on recombinant Mycobacterium tuberculosis KatG(M255I). UV-visible spectroscopic and mass spectrometric studies of the peptide fragments resulting from tryptic digestion of KatG(M255I) confirmed the presence of the single Tyr-Trp cross-link, as well as a 2e- oxidized form which is postulated to be an intermediate generated during Met-Tyr-Trp cross-link formation. KatG(M255I) lacking the Tyr-Trp cross-link was also prepared, and incubation with peroxyacetic acid, but not 2-methyl-1-phenyl-2-propyl hydroperoxide, resulted in complete formation of the Tyr-Trp cross-link. A mechanism for Tyr-Trp autocatalytic formation by KatG compound I is proposed from these studies. Optical stopped-flow studies with KatG(M255I) were performed, allowing characterization of compounds I, II, and III. Interestingly, two compound II intermediates were identified: (KatG*)(Por)Fe(III)-OH, where KatG* represents a protein-based radical, and oxoferryl (KatG)(Por)Fe(IV)=O. Insight into the contributions of the individual Tyr-Trp and Met-Tyr cross-links to catalase activity is presented, as is the overall contribution of the Met-Tyr-Trp cross-link to the structure-function-spectroscopy relationship and catalase-peroxidase mechanism in KatG. 相似文献
6.
The antitubercular agent isoniazid can be activated by Mycobacterium tuberculosis KatG using either a peroxidase compound I/II or a superoxide-dependent oxyferrous pathway. The identity of activated isoniazid is unknown, but it has been suggested that it may be a free radical intermediate. In this work, EPR spin trapping experiments detected isoniazid-derived radicals generated during KatG-mediated oxidation via the peroxidase compound I/II pathway. On the basis of hyperfine splitting patterns and oxygen dependence, these radicals were identified as the acyl, acyl peroxo, and pyridyl radicals of isoniazid. Isoniazid-resistant KatG(S315T) produced the same radicals found with KatG, while the less potent antitubercular agent nicotinic acid hydrazide produced the corresponding nicotinyl radicals. The time course of radical production was similar for KatG and KatG(S315T), while a lower steady-state level of radicals was produced from nicotinic acid hydrazide. These results support an earlier finding that the peroxidase pathway does not correlate with isoniazid resistance conferred by KatG(S315T). Trace amounts of radicals were detected via the superoxide-dependent pathway. The low level of isoniazid-derived radicals found in the superoxide-dependent pathway may be due to scavenging by superoxide. 相似文献
7.
Mycobacterium tuberculosis KatG is a heme-containing catalase-peroxidase responsible for activation, through its peroxidase cycle, of the front line antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide). Formation of Compound I (oxyferryl heme-porphyrin pi-cation radical), the classical peroxidase intermediate generated when the resting enzyme turns over with alkyl peroxides, is rapidly followed by production of a protein-centered tyrosyl radical in this enzyme. In our efforts to identify the residue at which this radical is formed, nitric oxide was used as a radical scavenging reagent. Quenching of the tyrosyl radical generated in the presence of NO was shown using electron paramagnetic resonance spectroscopy, and formation of nitrotyrosine was confirmed by proteolytic digestion followed by high performance liquid chromatography analysis of the NO-treated enzyme. These results are consistent with formation of nitrosyltyrosine by addition of NO to tyrosyl radical and oxidation of this intermediate to nitrotyrosine. Two predominant nitrotyrosine-containing peptides were identified that were purified and sequenced by Edman degradation. Both peptides were derived from the same M. tuberculosis KatG sequence spanning residues 346-356 with the amino acid sequence SPAGAWQYTAK, and both peptides contained nitrotyrosine at residue 353. Some modification of Trp-351 most probably into nitrosotryptophan was also found in one of the two peptides. Control experiments using denatured KatG or carried out in the absence of peroxide did not produce nitrotyrosine. In the mutant enzyme KatG(Y353F), which was constructed using site-directed mutagenesis, a tyrosyl radical was also formed upon turnover with peroxide but in poor yield compared with wild-type KatG. Residue Tyr-353 is unique to M. tuberculosis KatG and may play a special role in the function of this enzyme. 相似文献
8.
Chouchane S Girotto S Yu S Magliozzo RS 《The Journal of biological chemistry》2002,277(45):42633-42638
The catalytic function of Mycobacterium tuberculosis catalase-peroxidase (KatG) and its role in activation of the anti-tuberculosis antibiotic isoniazid were investigated using rapid freeze-quench electron paramagnetic resonance (RFQ-EPR) experiments. The reaction of KatG with peroxyacetic acid was followed as a function of time using x-band EPR at 77 K. A doublet EPR signal appears within 6.4 ms after mixing and at time points through hundreds of milliseconds. Thereafter, a singlet signal develops and finally predominates after 1 s, with a total yield of radical approximately 0.5 spin/heme. Simulation of the spectra provided EPR parameters consistent with those for tyrosyl radicals. Changes in the hyperfine splitting and/or line width in spectra for l-3,3-[2H2]tyrosine-labeled, but not l-2,4,5,6,7-[2H5]tryptophan-labeled KatG confirmed this assignment. The initial rate of radical formation was unchanged using a 3-fold or 10-fold excess of peroxyacetic acid, consistent with a rate-determining step involving an intermediate. Although Compound I is likely to be the precursor of tyrosyl radical in KatG, neither its EPR signal nor its reduction to Compound II during formation of the radical(s) could be observed. The tyrosyl radical doublet signal was rapidly quenched by addition of isoniazid and benzoic hydrazide, but not by iproniazid, which binds poorly to KatG. 相似文献
9.
Kapetanaki SM Zhao X Yu S Magliozzo RS Schelvis JP 《Journal of inorganic biochemistry》2007,101(3):422-433
Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme-pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity. In order to test a potential structural role of the adduct that supports catalase activity, we have used resonance Raman spectroscopy to probe the local heme environment of KatG(Y229F). In comparison to wild-type KatG, resting KatG(Y229F) contains a significant amount of 6-coordinate, low-spin heme and a more planar heme. Resonance Raman spectroscopy of the ferrous-CO complex of KatG(Y229F) suggest a non-linear Fe-CO binding geometry that is less tilted than in wild-type KatG. These data provide evidence that the Met-Tyr-Trp adduct imparts structural stability to the active site of KatG that seems to be important for sustaining catalase activity. 相似文献
10.
Wengenack NL Lopes H Kennedy MJ Tavares P Pereira AS Moura I Moura JJ Rusnak F 《Biochemistry》2000,39(37):11508-11513
Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG. 相似文献
11.
Argyrou A Vetting MW Aladegbami B Blanchard JS 《Nature structural & molecular biology》2006,13(5):408-413
Isoniazid is a key drug used in the treatment of tuberculosis. Isoniazid is a pro-drug, which, after activation by the katG-encoded catalase peroxidase, reacts nonenzymatically with NAD(+) and NADP(+) to generate several isonicotinoyl adducts of these pyridine nucleotides. One of these, the acyclic 4S isomer of isoniazid-NAD, targets the inhA-encoded enoyl-ACP reductase, an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Here we show that the acyclic 4R isomer of isoniazid-NADP inhibits the M. tuberculosis dihydrofolate reductase (DHFR), an enzyme essential for nucleic acid synthesis. This biologically relevant form of the isoniazid adduct is a subnanomolar bisubstrate inhibitor of M. tuberculosis DHFR. Expression of M. tuberculosis DHFR in Mycobacterium smegmatis mc(2)155 protects cells against growth inhibition by isoniazid by sequestering the drug. Thus, M. tuberculosis DHFR is the first new target for isoniazid identified in the last decade. 相似文献
12.
13.
Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy 总被引:1,自引:0,他引:1
Kapetanaki S Chouchane S Girotto S Yu S Magliozzo RS Schelvis JP 《Biochemistry》2003,42(13):3835-3845
KatG from Mycobacterium tuberculosis is a heme-containing catalase-peroxidase, which belongs to the class I peroxidases and is important for activation of the prodrug isoniazid (INH), a front-line antituberculosis drug. In many clinical isolates, resistance to INH has been linked to mutations on the katG gene, and the most prevalent mutation, S315T, suggests that modification of the heme pocket has occurred. Electronic absorption and resonance Raman spectra of ferric wild-type (WT) KatG and its INH-resistant mutant KatG(S315T) at different pH values and their complexes with INH and benzohydroxamic acid (BHA) are reported. At neutral pH, a quantum mechanically mixed spin state (QS) is revealed, which coexists with five-coordinate and six-coordinate high-spin hemes in WT KatG. The QS heme is the major species in KatG(S315T). Addition of either INH or BHA to KatG induces only minor changes in the resonance Raman spectra, indicating that both compounds do not directly interact with the heme iron. New vibrational modes are observed at 430, 473, and 521 cm(-1), and these modes are indicative of a change in conformation in the KatG heme pocket. The intensity of these modes and the relative population of the QS heme are stable in KatG(S315T) but not in the WT enzyme. This indicates that there are differences in heme pocket stability between WT KatG and KatG(S315T). We will discuss the stabilization of the QS heme and propose a model for the inhibition of INH oxidation by KatG(S315T). 相似文献
14.
Inhibition of the enzyme Mycobacterium tuberculosis InhA (enoyl-acyl carrier protein reductase) due to formation of an isonicotinoyl-NAD adduct (IN-NAD) from isoniazid (INH) and nicotinamide adenine dinucleotide cofactor is considered central to the mode of action of INH, a first-line treatment for tuberculosis infection. INH action against mycobacteria requires catalase-peroxidase (KatG) function, and IN-NAD adduct formation is catalyzed in vitro by M. tuberculosis KatG under a variety of conditions, yet a physiologically relevant approach to the process has not emerged that allows scrutiny of the mechanism and the origins of INH resistance in the most prevalent drug-resistant strain bearing KatG[S315T]. In this report, we describe how hydrogen peroxide, delivered at very low concentrations to ferric KatG, leads to efficient inhibition of InhA due to formation of the IN-NAD adduct. The rate of adduct formation mediated by wild-type KatG was about 20-fold greater than by the isoniazid-resistant KatG[S315T] mutant under optimal conditions (H2O2 supplied along with NAD+ and INH). Slow adduct formation also occurs starting with NADH and INH, in the presence of KatG even in the absence of added peroxide, due to endogenous peroxide. The poor efficiency of the KatG[S315T] mutant can be enhanced merely by increasing the concentration of INH, consistent with this enzyme's reduced affinity for INH binding to the resting enzyme and the catalytically competent enzyme intermediate (Compound I). Origins of drug resistance in the KatG[S315T] mutant enzyme are analyzed at the structural level through examination of the three-dimensional X-ray crystal structure of the mutant enzyme. 相似文献
15.
Mycobacterium tuberculosis (Mtb) KatG is a catalase-peroxidase that is thought to activate the antituberculosis drug isoniazid (INH). The local environment of Mtb KatG and its most prevalent INH-resistant mutant, KatG(S315T), is investigated with the exogenous ligands CO and NO in the absence and presence of INH by using resonance Raman, FTIR, and transient absorption spectroscopy. The Fe-His stretching vibration is detected at 244 cm(-)(1) in the ferrous forms of both the wild-type enzyme and KatG(S315T). The ferrous-CO complex of both enzymes exhibits nu(CO), nu(Fe-CO), and delta(Fe-C-O) vibrations at 1925, 525, and 586 cm(-)(1), respectively, indicating a positive electrostatic environment for the CO complex, which is probably weakly hydrogen-bonded to a distal residue. The CO geometry is nonlinear as indicated by the unusually high intensity of the Fe-C-O bending vibration. The nu(Fe(III)-NO) and delta(Fe(III)-N-O) vibrations are detected at 596 and 571 cm(-)(1), respectively, in the ferric forms of wild-type and mutant enzyme and are indicative of a nonlinear binding geometry in support of the CO data. Although the presence of INH does not affect the vibrational frequencies of the CO- and NO-bound forms of either enzyme, it seems to perturb slightly their Raman intensities. Our results suggest a minimal, if any, perturbation of the distal heme pocket in the S315T mutant. Instead, the S315T mutation seems to induce small changes in the KatG conformation/dynamics of the ligand access channel as indicated by CO rebinding kinetics in flash photolysis experiments. The implications of these findings for the catalytic mechanism and mechanism of INH resistance in KatG(S315T) are discussed. 相似文献
16.
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this activity have not been identified in mycobacterial species. In this work, the Rv1106c gene that is annotated as a 3beta-hydroxysteroid dehydrogenase in Mtb has been cloned and heterologously expressed. The purified enzyme was kinetically characterized and found to have a pH optimum between 8.5 and 9.5. The enzyme, which is a member of the short chain dehydrogenase superfamily, uses NAD+ as a cofactor and oxidizes cholesterol, pregnenolone, and dehydroepiandrosterone to their respective 3-keto-4-ene products. The enzyme forms a ternary complex with NAD+ binding before the sterol. The enzyme shows no substrate preference for dehydroepiandrosterone versus pregnenolone with second-order rate constants (kcat/Km) of 3.2 +/- 0.4 and 3.9 +/- 0.9 microM-1 min-1, respectively, at pH 8.5, 150 mM NaCl, 30 mM MgCl2, and saturating NAD+. Trilostane is a competitive inhibitor of dehydroepiandrosterone with a Ki of 197 +/- 8 microM. The expression of the 3beta-hydroxysteroid dehydrogenase in Mtb is intracellular. Disruption of the 3beta-hydroxysteroid dehydrogenase gene in Mtb abrogates mycobacterial cholesterol oxidation activity. These data are consistent with the Rv1106c gene being the one responsible for 3beta-hydroxysterol oxidation in Mtb. 相似文献
17.
Activation of the antitubercular isoniazid (INH) by the Mycobacterium tuberculosis KatG produces an inhibitor for enoyl reductase (InhA). The mechanism for INH activation remains poorly understood, and the inhibitor has never been isolated. We have purified the InhA-inhibitor complex generated in the M. tuberculosis KatG-catalyzed INH activation. The complex exhibited a 278-nm absorption peak and a shoulder around 326 nm with a characteristic A(326)/A(278) ratio of 0.16. The complex was devoid of enoyl reductase activity. The inhibitor noncovalently binds to InhA with a K(d) < 0.4 nM and can be dissociated from denatured InhA for chromatographic isolation. The free inhibitor showed absorption peaks at 326 (epsilon(326) 6900 M(-1) cm(-1)) and 260 nm (epsilon(260) 27,000 M(-1) cm(-1)). The inactive complex can be reconstituted from InhA and the isolated inhibitor. The InhA inhibitor from the KatG-catalyzed INH activation was identical to that from a slow, KatG-independent, Mn(2+)-mediated reaction based on high pressure liquid chromatography analysis and absorption and mass spectral characteristics. By monitoring the formation of the InhA-inhibitor complex, we have found that manganese is not essential to the INH activation by M. tuberculosis KatG. Furthermore, the formation of the InhA inhibitor in the KatG reaction was independent of InhA. 相似文献
18.
Fraaije MW Kamerbeek NM Heidekamp AJ Fortin R Janssen DB 《The Journal of biological chemistry》2004,279(5):3354-3360
EtaA is a newly identified FAD-containing monooxygenase that is responsible for activation of several thioamide prodrugs in Mycobacterium tuberculosis. It was found that purified EtaA displays a remarkably low activity with the antitubercular prodrug ethionamide. Hinted by the presence of a Baeyer-Villiger monooxygenase sequence motif in the EtaA sequence, we have been able to identify a large number of novel EtaA substrates. It was discovered that the enzyme converts a wide range of ketones to the corresponding esters or lactones via a Baeyer-Villiger reaction, indicating that EtaA represents a Baeyer-Villiger monooxygenase. With the exception of aromatic ketones (phenylacetone and benzylacetone), long-chain ketones (e.g. 2-hexanone and 2-dodecanone) also are converted. EtaA is also able to catalyze enantioselective sulfoxidation of methyl-p-tolylsulfide. Conversion of all of the identified substrates is relatively slow with typical k(cat) values of around 0.02 s(-1). The best substrate identified so far is phenylacetone (K(m) = 61 microM, k(cat) = 0.017 s(-1)). Redox monitoring of the flavin cofactor during turnover of phenylacetone indicates that a step in the reductive half-reaction is limiting the rate of catalysis. Intriguingly, EtaA activity could be increased by one order of magnitude by adding bovine serum albumin. This reactivity and substrate acceptance-profiling study provides valuable information concerning this newly identified prodrug activator from M. tuberculosis. 相似文献
19.
B-subunit of phosphate-specific transporter from Mycobacterium tuberculosis is a thermostable ATPase
Sarin J Aggarwal S Chaba R Varshney GC Chakraborti PK 《The Journal of biological chemistry》2001,276(48):44590-44597
The B-subunit of phosphate-specific transporter (PstB) is an ABC protein. pstB was polymerase chain reaction-amplified from Mycobacterium tuberculosis and overexpressed in Escherichia coli. The overexpressed protein was found to be in inclusion bodies. The protein was solubilized using 1.5% N-lauroylsarcosine and was purified by gel permeation chromatography. The molecular mass of the protein was approximately 31 kDa. The eluted protein showed ATP-binding ability and exhibited ATPase activity. Among different nucleotide triphosphates, ATP was found to be the preferred substrate for M. tuberculosis PstB-ATPase. The study of the kinetics of ATP hydrolysis yielded K(m) of approximately 72 microm and V(max) of approximately 0.12 micromol/min/mg of protein. Divalent cation like manganese was inhibitory to the ATPase activity. Magnesium or calcium, on the other hand, had no influence on the functionality of the enzyme. The classical ATPase inhibitors like sodium azide, sodium vanadate, and N-ethylmaleimide were without any effect but an ATP analogue, 5'-p-fluorosulfonylbenzoyl adenosine, inhibited the ATPase function of the recombinant protein with a K(i) of approximately 0.40 mm. Furthermore, there was hardly any ATP hydrolyzing ability of the PstB as a result of mutation of the conserved aspartic acid residue to lysine in the Walker motif B, confirming the recombinant protein is an ATPase. Interestingly, analysis of the recombinant PstB revealed that it is a thermostable ATPase; thus, our results highlight for the first time the presence of such an enzyme in any mesophilic bacteria. 相似文献
20.
Ranguelova K Suarez J Metlitsky L Yu S Brejt SZ Brejt SZ Zhao L Schelvis JP Magliozzo RS 《Biochemistry》2008,47(47):12583-12592
The catalase-peroxidase (KatG) of Mycobacterium tuberculosis (Mtb) is important for the virulence of this pathogen and also is responsible for activation of isoniazid (INH), an antibiotic in use for over 50 years in the first line treatment against tuberculosis infection. Overexpressed Mtb KatG contains a heterogeneous population of heme species that present distinct spectroscopic properties and, as described here, functional properties. A six-coordinate (6-c) heme species that accumulates in the resting enzyme after purification is defined as a unique structure containing weakly associated water on the heme distal side. We present the unexpected finding that this form of the enzyme, generally present as a minority species along with five-coordinate (5-c) enzyme, is the favored reactant for ligand binding. The use of resting enzyme samples with different proportional composition of 5-c and 6-c forms, as well as the use of KatG mutants with replacements at residue 315 that have different tendencies to stabilize the 6-c form, allowed demonstration of more rapid cyanide binding and preferred peroxide binding to enzyme containing 6-c heme. Optical-stopped flow and equilibrium titrations of ferric KatG with potassium cyanide reveal complex behavior that depends in part on the amount of 6-c heme in the resting enzymes. Resonance Raman and low-temperature EPR spectroscopy clearly demonstrate favored ligand (cyanide or peroxide) binding to 6-c heme. The 5-c and 6-c enzyme forms are not in equilibrium on the time scale of the experiments. The results provide evidence for the likely participation of specific water molecule(s) in the first phases of the reaction mechanism of catalase-peroxidase enzymes. 相似文献