首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hyperoxia on ventilatory and gas exchange dynamics were studied utilizing sinusoidal work rate forcings. Five subjects exercised on 14 occasions on a cycle ergometer for 30 min with a sinusoidally varying work load. Tests were performed at seven frequencies of work load during air or 100% O2 inspiration. From the breath-by-breath responses to these tests, dynamic characteristics were analyzed by extracting the mean level, amplitude of oscillation, and phase lag for each six variables with digital computer techniques. Calculation of the time constant (tau) of the ventilatory responses demonstrated that ventilatory kinetics were slower during hyperoxia than during normoxia (P less than 0.025; avg 1.56 and 1.13 min, respectively). Further, for identical work rate fluctuations, end-tidal CO2 tension fluctuations were increased by hyperpoxia. Ventilation during hyperoxia is slower to respond to variations in the level of metabolically produced CO2, presumably because hyperoxia attenuates carotid body output; the arterial CO2 tension is consequently less tightly regulated.  相似文献   

2.
Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.  相似文献   

3.
Recently, a new member of the calcitonin gene-related peptide (CGRP) family, adrenomedullin 2 (AM2) or intermedin (IMD), was identified. AM2/IMD has been shown to have a vasodilator effect in mice and rats and an effect on urine formation in rats. In the present study, we investigated the effects of intravenously infused rat AM2 (rAM2) on blood pressure (BP), heart rate (HR), renal sympathetic nerve activity (RSNA), and renal blood flow (RBF) in conscious unrestrained rats relative to the effects of rat adrenomedullin (rAM) and proadrenomedullin NH2-terminal 20 peptide (rPAMP). Intravenous infusion of rAM2 (5 nmol/kg) significantly decreased BP and increased HR, RSNA, and RBF. These hypotensive and sympathoexcitatory effects diminished after 20 min, and HR returned to control levels 30 min after cessation of the infusion. In contrast, a significant increase in RBF was still evident 60 min after cessation of the peptide infusion. The duration of BP, HR, and RSNA responses was longer with rAM (5 nmol/kg) than with rAM2 infusion, whereas the increases in RBF induced by rAM2 and rAM were similar in their amplitude and duration. Infusion of rPAMP (200 nmol/kg) increased HR and RSNA but had no effect on RBF. Baroreceptor denervation suppressed, but did not diminish, the increases in HR and RSNA to rAM2. These findings indicate that the physiological roles of rAM2 and rAM are similar and that rAM2 also has a long-lasting vasodilator action on the renal vascular bed.  相似文献   

4.
Phenibut, a nonspecific GABA derivative, is clinically used as an anxiolytic and tranquilizer in psychosomatic conditions. A GABA-ergic inhibitory pathway is engaged in respiratory control at both central and peripheral levels. However, the potential of phenibut to affect the O2-related chemoreflexes has not yet been studied. In this study we seek to determine the ventilatory responses to changes in inspired O2 content in anesthetized, spontaneously-breathing rats. Steady-state 5-min responses to 10% O2 in N2 and 100% O2 were taken in each animal before and 1 h after phenibut administration in a dose 450 mg/kg, i.p. Minute ventilation and its frequency and tidal components were obtained from the respiratory flow signal. We found that after a period of irregular extension of the respiratory cycle, phenibut stabilized resting ventilation at a lower level [20.0±3.3 (SD) vs 31.1±5.2 ml/min before phenibut; P<0.01]. The ventilatory depressant effect of phenibut was not reflected in the hypoxic response. In relative terms, this response was actually accentuated after phenibut; the peak hypoxic ventilation increased by 164% from baseline vs the 100% increase before phenibut. Regarding hyperoxia, its inhibitory effect on breathing was more expressed after phenibut. In conclusion, the GABA-mimetic phenibut did not curtail hypoxic ventilatory responsiveness, despite the presence of GABA-ergic pathways in both central and peripheral, carotid body mechanisms mediating the hypoxic chemoreflex. Thus, GABA-mediated synaptic inhibition may be elaborated in a way to sustain the primarily defensive ventilatory chemoreflex.  相似文献   

5.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

6.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

7.
S Vonhof  A L Sirén 《Life sciences》1991,49(2):111-119
The present study was performed in order to evaluate the effects of the selective alpha 2-adrenoceptor antagonist 6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine (SK&F 86466) on dermorphin-induced analgesia, respiratory depression and inhibition of locomotor activity in the conscious rat. Intracerebroventricular (icv) administration of dermorphin (3 nmol/rat) decreased respiration rate and relative ventilatory minute volume maximally by 38% and 50% of baseline respectively. SK&F 86466 dose-dependently reversed the dermorphin-induced depression of ventilatory parameters, while SK&F 86466 exerted no effect on dermorphin-induced analgesia or depression of locomotor activity due to catalepsia. It appears, therefore, that alpha 2-adrenoceptors selectively interact with mu 2-opioid-receptor mediated effects, such as respiratory depression, but are not involved in the modulation of mu 1-opioid-related effects, such as supraspinal analgesia and depression of locomotor activity.  相似文献   

8.
The effects of intravenous infusion of dopamine (20 microgram.min) on the steady-state ventilatory and carotid chemoreceptor responses to successive levels of isocapnic hypoxia and hyperoxic hypercapnia were investigated in cats anesthetized with alpha-chloralose. Dopamine infusion was followed by a maximal decrease in ventilation in about 20 s. Thereafter, the effect diminished and stabilized. Termination of dopamine infusion was promptly followed by an increase in ventilation. These ventilatory responses were smaller than the corresponding carotid chemoreceptor responses. The steady-state effect of dopamine infusion was to diminish ventilation at all levels of arterial O2 tension, the decrease being greater during hypoxia than that during hyperoxia. Bilateral section of the carotid sinus nerves significantly diminished but did not abolish the inhibitory effect of dopamine on ventilation during hyperoxia. Thus the ventilatory depression due to dopamine infusion is not entirely due to its effect on the carotid chemoreceptors. Dopamine decreased ventilatory responses to successive levels of hypercapnia by the same magnitude without changing the slope of the response curves. The steady-state relationship between chemoreceptor activity and ventilation shows that the ventilatory equivalent for carotid chemoreceptor activity is increased during dopamine infusion because of its greater inhibitory effect on carotid chemoreceptor activity than on ventilation with the decrease of arterial O2 tension.  相似文献   

9.
The cardiovascular and respiratory responses to relatively specific μ or δ agonists microinjected (0.5 μl/kg) into the region of the nucleus of tractus solitarius (NTS) were examined in anesthetized cats. Blood pressure, heart rate, and respiratory rate were monitored for 30 min after the microinjection of opioid compounds or saline vehicle. The δ agonist, (d-Ala2,d-Leu5)-enkephalin (10–100 nmol/kg) elicited dose-dependent decreases in blood pressure, heart rate, and respiratory rate which were naloxone reversible. In contrast the μ agonists, morphine (10–54 nmol/kg) and morphiceptin (100–320 nmol/kg) had no effect on blood pressure or respiratory rate; yet, naloxone elicited pressor responses in animals pretreated with these μ agonists. A receptor-binding assay demonstrated a predominance of μ sites in the NTS. These data show that the δ opiate agonist is more effective than μ agonists in modifying cardiovascular variables in the NTS; we suggest caution in relating specific cardiovascular function to receptor subtypes defined by binding assays.  相似文献   

10.
The chemical messengers released onto second-order dorsal horn neurons from the spinal terminals of contraction-activated group III and IV muscle afferents have not been identified. One candidate is the tachykinin substance P. Related to substance P are two other tachykinins, neurokinin A (NKA) and neurokinin B (NKB), which, like substance P, have been isolated in the dorsal horn of the spinal cord and have receptors there. Whether NKA or NKB plays a transmitter/modulator role in the spinal processing of the exercise pressor reflex is unknown. Therefore, we tested the following hypotheses. After the intrathecal injection of a highly selective NK-1 (substance P) receptor antagonist onto the lumbosacral spinal cord, the reflex pressor and ventilatory responses to static muscular contraction will be attenuated. Likewise, after the intrathecal injection either of an NK-2 (NKA) receptor antagonist or an NK-3 (NKB) receptor antagonist onto the lumbrosacral spinal cord, the reflex pressor and ventilatory responses to static contraction will be attenuated. We found that, 10 min after the intrathecal injection of 100 micrograms of the NK-1 receptor antagonist, the pressor and ventilatory responses to contraction were significantly (P < 0.05) attenuated. Mean arterial pressure was attenuated by 13 +/- 3 mmHg (48%) and minute volume of ventilation by 120 +/- 38 ml/min (34%). The cardiovascular and ventilatory responses to contraction before either 100 micrograms of the NK-2 receptor antagonist or 100 micrograms of the NK-3 receptor antagonist were not different (P > 0.05) from those after the NK-2 or the NK-3 receptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were no differences in minute ventilation between stressed and unstressed groups. Rats previously exposed to immobilization stress had a 45% lower ventilatory response to hypercapnia (inspiratory CO(2) fraction = 0.05) than controls. In contrast, stress exposure had no statistically significant effect on the ventilatory response to hypoxia (inspiratory O(2) fraction = 0.12). Stress-induced attenuation of the hypercapnic response was associated with reduced tidal volume and inspiratory flow increases; the frequency and timing components of the response were not different between groups. We conclude that previous exposure to a stressful condition that does not constitute a direct challenge to respiratory homeostasis can elicit persistent (> or =24 h) functional plasticity in the ventilatory control system.  相似文献   

12.
The ventilatory response to several minutes of hypoxia consists of various time-dependent phenomena, some of which occur during hypoxia (e.g., short-term depression), whereas others appear on return to normoxia (e.g., posthypoxic frequency decline). Additional phenomena can be elicited by acute, intermittent hypoxia (e.g., progressive augmentation, long-term facilitation). Current data suggest that these phenomena originate centrally. We tested the hypothesis that carotid body afferent activity undergoes time-dependent modulation, consistent with a direct role in these ventilatory phenomena. Using an in vitro rat carotid body preparation, we found that 1) afferent activity declined during the first 5 min of severe (40 Torr Po(2)), moderate (60 Torr Po(2)), or mild (80 Torr Po(2)) hypoxia; 2) after return to normoxia (100 Torr Po(2)) and after several minutes of moderate or severe hypoxia, afferent activity was transiently reduced compared with prehypoxic levels; and 3) with successive 5-min bouts of mild, moderate, or severe hypoxia, afferent activity during bouts increased progressively. We call these phenomena sensory hypoxic decline, sensory posthypoxic decline, and sensory progressive augmentation, respectively. These phenomena were stimulus specific: similar phenomena were not seen with 5-min bouts of normoxic hypercapnia (100 Torr Po(2) and 50-60 Torr Pco(2)) or hypoxic hypocapnia (60 Torr Po(2) and 30 Torr Pco(2)). However, bouts of either normoxic hypercapnia or hypocapnic hypoxia resulted in sensory long-term facilitation. We suggest time-dependent carotid body activity acts in parallel with central mechanisms to shape the dynamics of ventilatory responses to respiratory chemostimuli.  相似文献   

13.
To assess the ventilatory responses elicited by changes of tissue hypoxia, sodium cyanide (0.12 mg/kg-min for 10 min) was infused into the upper abdominal aorta of anesthetized dogs. These infusions produced decreases in oxygen consumption, increases in arterial lactate concentration, and increases in arterial lactate/pyruvate ratio. Coincident with these metabolic changes of hypoxia, minute ventilation (VE) increased 228 +/- SE 36% and arterial PCO2 decreased 21 +/- SE 2 mmHg; therefore, pH increased both in arterial blood in and cisternal cerebrospinal fluid. Following infusion of cyanide into the abdominal aorta, small quantities of cyanide (48 +/- SE 14 mumol/liter) appeared in carotid arterial blood. To evaluate the possibility that the observed increases in VE were due to stimulation of peripheral arterial chemoreceptors by the recirculating cyanide, the carotid and aortic chemoreceptors were denervated in four dogs. Nonetheless, after intra-aortic infusion of sodium cyanide (1.2 mg/kg), ventilation in these chemodenervated animals again increased considerably (154 +/- SE 36%). In order to explore the possibility that cyanide infusion can stimulate ventilation by an extracranial mechanism, heads of vagotomized dogs (including the carotid bodies) were perfused entirely by donor dogs. The intra-aortic infusion of sodium cyanide (0.9 mg/kg) into these head-perfused animals still caused large increases in VE (163 +/- SE 19%). It is concluded that intra-aortic cyanide infusions stimulate VE by an extracranial mechanism other than the carotid and aortic chemoreceptors.  相似文献   

14.
Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease in VE on reoxygenation with either air (-11%) or 100% O2 (-20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in VE (-28.4 vs. -38.7%, air vs. 100% O2) and f (-13.8 vs. -22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase in VE (+116%) and f (+62.2%) during air reoxygenation and significant increase in VE (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.  相似文献   

15.
The effects of pentobarbital (30 mg/kg), urethan (2 g/kg), chloralose/urethan (50 mg/kg, 500 mg/kg), and thiobutabarbital (Inactin, 100 mg/kg) on the mean arterial pressure (BP) and heart period (HP) of Marmota flaviventris were examined. Anesthesia significantly decreased BP by 22-27 mm Hg and HP by 123-151 msec. In a series of paired studies with eight marmots it was found that pentobarbital increased the BP response to phenylephrine and almost abolished the baroreflex HP responses to phenylephrine and nitroglycerin. In another series of animals right carotid occlusion in unanesthetized animals produced greater changes in BP and HP than occlusion of the left carotid. Chloralose/urethan, urethan, or Inactin reduced the reflex BP response to unilateral carotid occlusion by 50% and the HP response by 96%. It was concluded that the anesthetic agents investigated depress baroreflex responses significantly by influencing efferent sympathetic and parasympathetic reflex responses. They, therefore, are not appropriate for cardiovascular studies in acute, anesthetized preparations of the marmot and, perhaps, other hibernating species.  相似文献   

16.
Chronic hypoxia activates a local angiotensin-generating system in the carotid body. Here, we test the hypothesis that the activity of the critical enzyme for this system, angiotensin-converting enzyme (ACE), in the carotid body is subject to regulation by a time-course hypoxia. Results from the carotid body assays showed that ACE activity was markedly increased under the hypoxic stress of 7-, 14-, 21-, and 28-day exposures. The changes in ACE activity of 7-day (15.00 vs. 30.95 x 10(-5) nmol.microg(-1).min(-1)), 14-day (8.73 vs. 30.25 x 10(-5) nmol.microg(-1).min(-1)), and 21-day (11.41 vs. 31.83 x 10(-5) nmol.microg(-1).min(-1)) hypoxia treatments were enhanced significantly. However, ACE activity in 28-day (13.18 vs. 24.53 x 10(-5) nmol.microg(-1).min(-1)) hypoxia treatment was observed to increase insignificantly when compared with results in the respective control groups. Captopril inhibited all rises in ACE activity in both the control and experimental groups. Results clearly indicate an activation of the enzymatic activity of ACE, the critical enzyme for determining the conversion of angiotensin I into the physiologically active angiotensin II, by chronic hypoxia in the carotid body. An increase in the ACE activity may increase the local production of angiotensin II in the carotid body and thus its agonist action at the AT1 receptor. This may be important in the modulation of cardiopulmonary adaptation in the hypoxic ventilatory response as well as for electrolyte and water homeostasis during chronic hypoxia.  相似文献   

17.
To investigate the role of the carotid bodies in exercise hyperpnea and acid-base control, normal and carotid body-resected subjects (CBR) were studied during constant-load and incremental exercise. There was no significant difference in the first-breath ventilatory responses to exercise between the groups; some subjects in each reproducibly exhibited abrupt responses. The subsequent change in Ve toward steady state was slower in the CBR group. The steady-state ventilatory responses were the same in both groups at work rates below the anaerobic threshold (AT). However, above the AT, the hyperpnea was less marked in the CBR group. Ve and acid-base measurements revealed that the CBR group failed to hyperventilate in response to the metabolic acidosis of either constant-load or incremental exercise. We conclude that the carotid bodies 1) are not responsible for the initial exercise hyperpnea, 2) do affect the time course of Ve to its steady state, and 3) are responsible for the respiratory compensation for the metabolic acidosis of exercise.  相似文献   

18.
Patients with obstructive sleep apnea (OSA) show augmented ventilatory, sympathetic and cardiovascular responses to hypoxia. The facilitatory effect of chronic intermittent hypoxia (CIH) on the hypoxic ventilatory response has been attributed to a potentiation of the carotid body (CB) chemosensory response to hypoxia. However, it is a matter of debate whether the effects induced by CIH on ventilatory responses to hypoxia are due to an enhanced CB activity. Recently, we studied the effects of short cyclic hypoxic episodes on cat cardiorespiratory reflexes, heart rate variability, and CB chemosensory activity. Cats were exposed to cyclic hypoxic episodes repeated during 8 hours for 4 days. Our results showed that CIH selectively enhanced ventilatory and carotid chemosensory responses to acute hypoxia. Exposure to CIH did not increase basal arterial pressure, heart rate, or their changes induced by acute hypoxia. However, the spectral analysis of heart rate variability of CIH cats showed a marked increase of the low/high frequency ratio and an increased variability in the low frequency band of heart rate variability, similar to what is observed in OSA patients. Thus, it is likely that the enhanced CB reactivity to hypoxia may contribute to the augmented ventilatory response to hypoxia.  相似文献   

19.
Experiments were designed using conscious Sprague-Dawley rats to determine the blood pressure (BP) and heart rate (HR) responses to intravenous doses of (1) the adrenal catecholamines noradrenaline (NA) and adrenaline (A), (2) adrenal pentapeptides methionine enkephalin (ME) and leucine enkephalin (LE), (3) combination (i.v.) injections of both ME or LE with NA or A that modulate the hemodynamic responses when the adrenal catecholamines were given alone, and (4) the possible receptor mechanisms mediating the resultant BP and HR response to i.v. pentapeptide administration. NA (0.48 and 2.4 nmol) and A (0.3 and 1.5 nmol) given i.v. evoked potent, dose-related pressor responses associated with reflex bradycardia. ME and LE (1.6 - 48 nmol) elicited transient (10-20 s) increases in mean arterial pressure (MAP), which was associated either with no change in mean heart rate (MHR), such as ME, or with slight bradycardia (i.e., LE). Combining ME or LE (16 nmol) with NA (2.4 nmol) or A (0.3 or 1.5 nmol) did not change MAP and MHR from when these respective doses of NA or A were given alone. However, 16 nmol of ME or LE with a low dose of NA (0.48 nmol) increased the pressor response compared with NA (0.48 nmol) given alone. Other experiments whereby specific receptor blockers (naloxone, diprenorphine, atropine, propranolol, phentolamine or guanethidine) were given i.v. 5 min before subsequent i.v. administration of LE or ME (16 nmol) indicated that only phentolamine or guanethidine could completely suppress the pressor responses of LE and ME. Naloxone and diprenorphine pretreatment attenuated the pressor response of LE but did not affect the BP response to ME.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In a previous work, we showed that the adult cat demonstrates a ventilatory decline during sustained hypoxia (the "roll off" phenomenon) and that the mechanism responsible for this secondary decrease in ventilation lies within the central nervous system (J. Appl. Physiol. 63: 1658-1664, 1987). In this study, we sought to determine whether central dopaminergic mechanisms could have a role in the roll off. We studied the effects of haloperidol, a peripheral and centrally acting dopamine receptor antagonist, on the ventilatory response to sustained isocapnic hypoxia (end-tidal PO2 40-50 Torr, 20-25 min) in awake cats. In vehicle control cats (n = 5), sustained hypoxia elicited a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a 24 +/- 6% (P less than 0.01) reduction. In contrast, in haloperidol- (0.1 mg/kg) treated cats (n = 5) the ventilatory roll off was virtually abolished (-1 +/- 1%; P = NS). We also measured ventilatory, carotid sinus nerve (CSN) and phrenic nerve (PhN) responses to sustained isocapnic hypoxia in anesthetized animals (n = 6) to explore the influence of haloperidol on peripheral and central response during the roll off. Control responses to hypoxia showed an initial increase in ventilation, PhN, and CSN activity, followed by a subsequent decline in ventilation and PhN activity of 17 +/- 3 and 17 +/- 5%, respectively (P less than 0.05). In contrast, CSN activity remained unchanged during the roll off. Administration of haloperidol (1 mg/kg) reduced the initial increment in ventilation, while the initial increase in CSN activity was augmented.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号