首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This experiment was conducted to define the temporal relationships among estrus, the LH surge and ovulation after estrus synchronization in dwarf goats and to assess the effect of season on these parameters. In November (breeding season), March (transition period) and July (non-breeding season), estrus was synchronized in 12 dwarf goats by means of intravaginal sponges containing 60 mg medroxyprogesterone acetate (MAP) for 10 d, coupled with 125 microg cloprostenol i.m. 48 h before sponge removal and 300 IU eCG i.m. at sponge removal. A different group of animals was used during each time period. Onset of estrus was monitored using two males, and blood samples for the measurement of plasma LH were collected at 2-h intervals from 24 to 60 h after sponge removal. Ovulation was confirmed by laparoscopy at 54 and 72 h after sponge removal. A seasonal shift was detected in the intervals to onset of estrus, LH surge, and ovulation after sponge removal (P<0.05), with sponge removal to onset of estrus being shorter (P<0.05) in November (25.0 +/- 1.56 h) and July (28.9 +/- 2.43 h) than in March (40.9 +/- 3.27 h). The intervals between onset of estrus and the LH surge and between the LH surge and ovulation were found to be constant throughout the different seasons. An optimal time for breeding, artificial insemination, oocyte and embryo recovery, and embryo transfer may be predicted using information gained from these studies.  相似文献   

2.
《Small Ruminant Research》2009,84(1-3):29-33
The objective of this study was to evaluate the LH and ovulatory response of dominant and subordinate dairy does following the introduction of males. A behavioral study was carried out to determine the individual success index (SI) of 35 anestrous does according to their ability to dominate other females. The 8 highest-ranking (highest SI) and the 8 lowest-ranking does (lowest SI) in terms of dominance were separated from the rest of the herd and placed together in the same pen, where a male was later introduced. Blood samples for plasma LH determinations were obtained from the 16 females at 30 min intervals from 0 to 6, 12 to 18 and 33 to 39 h after the introduction of the male, using an intravenous catheter. After day 8, plasma progesterone was also measured daily in order to determine the occurrence of ovulation. None of the does showed LH pulses during the sampling period prior to the introduction of the male. The dominant does showed significantly (p < 0.05) more LH pulses (2.0 ± 0.18 ng/ml vs. 1.2 ± 0.25 ng/ml) and a higher mean plasma LH concentration (0.25 ± 0.03 ng/ml vs. 0.14 ± 0.03 ng/ml) than the subordinate goats during the first 6 h of exposure to the male. There were no differences in LH pulsatility or concentrations at other times. The frequency of goats that ovulated tended to be greater in high-ranked than low-ranked does (87% vs. 37%). It could be concluded that the immediate LH response to the presence of the male (number of LH pulses) is higher in the dominant, compared to the subordinate goats, and this is associated with a higher number of dominant goats ovulating in response to the male effect.  相似文献   

3.
In the present study, we analyzed the results of two years of response to the male effect in seasonally anestrous goats to investigate whether the activation of female reproductive activity by the male effect is related to the body weight of the females. Seventy-nine adult female Mexican mixed breed goats were used. The anestrous females were exposed during 15 days to sexually active males, and were classified into three categories according to their mean body weight +/-SD (42 +/- 9 kg) (Light: < or = 33 kg, n = 19; Medium: 34-50 kg, n = 46; Heavy: > or = 51 kg, n = 14). More than 98% of the goats from the Medium and Heavy groups showed at least one estrus behavior within the first 15 days following the introduction of the bucks, versus only 63% of the females from the Light group (P < 0.01). The interval between the introduction of the males and the onset of estrus behavior was longer in the females of the Light and Medium groups (4.2 +/- 0.8 and 3.3 +/- 0.3 days) than in the females of the Heavy group (2.0 +/- 0.2 days; P < 0.03). Also, body weight was negatively correlated with latency to first estrus (Spearman r = -0.57; P < 0.001). These results are in agreement with the hypothesis that the ability of anestrous goats to respond to the male effect is positively influenced by their body weight.  相似文献   

4.
Both the onset of puberty in the lamb and the annual resumption of reproductive activity in adult male and female sheep are characterized by increased secretion of LH due to reduced responsiveness to steroid inhibition. However, the timing of puberty is sexually differentiated, for males undergo a reduction in sensitivity to steroid feedback at 10 wk of age, whereas females remain highly responsive to steroid inhibition until 30 wk. This sex difference is determined by androgens in utero. The present study was conducted to determine whether a sex difference exists in the timing of seasonal transitions in adult males and females. We compared serum LH in gonadectomized, estradiol-treated males (n = 7), females (n = 6), and androgenized females (n = 5) from blood samples collected twice weekly for one year. As determined by changes in the pattern of LH secretion, the onset and termination of the autumn breeding season were not different between males, females, and androgenized females (termination: 1 February +/- 4 days, mean +/- SE all groups; onset: males, 22 August +/- 4 days; females, 5 September +/- 18 days; androgenized females, 16 September +/- 10.5 days). However, there was a transient increase in LH (20 May to 23 June) in males, but not in females or androgenized females. Although no effects of prenatal testosterone were evident in the control of LH secretion in adult androgenized females, LH secretion in androgenized males was elevated throughout the nonbreeding season in 3 of 5 animals, indicating that exogenous testosterone may reduce seasonal increases in responsiveness to steroid inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Baril G  Vallet JC 《Theriogenology》1990,34(2):303-311
Alpine dairy goats were induced to superovulate at the end of a progestagen treatment with porcine follicle stimulating hormone (pFSH) during the breeding season (n = 10 goats) and out of the breeding season (n = 10 goats). Occurrence of estrus and of the luteinizing hormone (LH) peak were checked every 4 h. Ovulations were determined every 6 h by ovarian laparoscopic examination. Among the parameters studied, the mean interval from sponge removal to the onset of estrus did not differ whatever the season of treatment, but the variability was higher for females treated out of the breeding season. Ovulations began during the laparoscopic control period for nine of ten goats during the breeding season vs seven of ten goats out of the breeding season. For these 16 females, on which the LH peak and beginning of ovulation were known, the season did not affect the intervals between the onset of estrus and the LH peak and between the LH peak and the beginning of ovulation. When ovulations are observed by laparoscopy every 6 h, for any given goat 54.9% of total ovulations (counted 7 d after estrus) occurs in less than 6 h, and 87.1% in less than 12 h. Although the interval between the LH peak and the ovulation is quite constant, the additive variabilities of the intervals between the sponge removal and the onset of estrus and between the onset of estrus and the LH peak precluded the determination of an optimal time for artificial insemination (AI) by timing sponge removal or onset of estrus.  相似文献   

6.
The impact of male presence or absence on the timing of the preovulatory LH surge and estrus was studied in 3 experimental groups (n = 6/group) of Eld's deer hinds pretreated with intravaginal progesterone-releasing devices (CIDR-type G) as follows: Group 1 = indirect male contact barn; Group 2 = direct male contact barn; and Group 3 = male isolation barn. For all hinds, the duration of the preovulatory LH surge averaged 2.5+/-0.5 h, whereas mean peak preovulatory and basal LH concentrations were 2.9+/-0.2 ng mL(-1) and 0.27+/-0.03 ng mL(-1), respectively. Nine of 12 male-exposed hinds exhibited a preovulatory LH surge within 24 to 32 h postCIDR device withdrawal, whereas 0 of 6 male-isolated hinds exhibited a preovulatory LH surge during the same time period. Onset of behavioral estrus (45.2+/-2.3, 52.7+/-5.7 and 66.3+/-1.8 h, respectively) was significantly advanced (P<0.05) after CIDR device withdrawal in male exposed hinds (Groups 1 and 2) compared with male isolated hinds (Group 3). These data suggest that stag exposure is important for modulating the timing of the preovulatory LH surge and behavioral estrus after synchronization of estrus with exogenous progestagens.  相似文献   

7.
To determine whether a link exists between reproductive seasonality and the structure of the melatonin receptor 1A (MTNR1A) gene, the latter was studied in year-round estrous breeds (Jining Grey and Boer goats) and seasonal estrous breeds (Liaoning Cashmere, Inner Mongolia Cashmere, Wendeng milk and Beijing native goats). A large fragment of exon 2 of MTNR1A gene was amplified by PCR using sheep sense and antisense primers in 260 does of six breeds. The uniform 824 bp PCR product was digested with restriction endonucleases MnII and RsaI, and checked for the presence of restriction sites. No polymorphism at the MnII cleavage sites was detected in all six goat breeds and no relationship could be established between the MnII cleavage sites of MTNR1A gene and reproductive seasonality in goats. For polymorphic RsaI cleavage site at base position 53, only genotype RR (267 bp/267 bp) was detected in Jining Grey goats, both genotype RR and genotype Rr (267 bp/320 bp) were found in all other goat breeds, no genotype rr (320 bp/320 bp) was detected in all six goat breeds. Frequency of genotype RR was obviously higher, and frequency of genotype Rr was obviously lower in year-round estrous goat breeds than in seasonal estrous goat breeds. Sequencing revealed one mutation (G52A) in genotype Rr compared with genotype RR. For polymorphic RsaI cleavage site, the differences of genotype distributions were significant (P<0.05) between year-round estrous goat breeds and seasonal estrous goat breeds. These results preliminarily showed an association between genotype RR and year-round estrus in goats, and an association between genotype Rr and seasonal estrus in goats.  相似文献   

8.
Hair sheep ewes were used to evaluate the influence of various levels of mating stimuli on the duration and timing of estrus and LH concentrations around estrus. Ewes were treated with PGF2alpha (15 mg, im) 10 d apart. At the time of the second PGF2alpha treatment (Day 0) ewes were placed in groups and exposed to different types of mating stimuli. One group of ewes (n = 16) was exposed to an epididymectomized ram (RAM), a second group of ewes (n = 16) was exposed to an epididymectomized ram wearing an apron to prevent intromission (APRON) and a third group of ewes (n = 17) was exposed to an androgenized ovariectomized ewe (T-EWE). Jugular blood samples were collected from ewes at 6-h intervals through Day 5. Plasma was harvested and LH concentration was determined by RIA. The ewes were observed at 6-h intervals to detect estrus. A ewe was considered to be out of estrus when she no longer stood to be mounted by the teaser animal. There was no difference (P > 0.10) in the proportion of ewes expressing estrus (79.6%) or having an LH surge (85.7%) among the treatments. Neither the time to estrus nor the duration of estrus were different (P > 0.10) among APRON, RAM or T-EWE groups (41.6+/-3.8 vs 43.6+/-3.6 vs 46.1+/-3.6 h, respectively, and 26.5+/-2.2 vs 24.8+/-2.3 vs 30.5+/-2.2 h, respectively). The time to LH surge was similar (P > 0.10) among APRON, RAM and T-EWE groups (51.2+/-4.5 vs 51.2+/-4.7 vs 52.7+/-4.5 h, respectively). The magnitude of the LH surge was similar (P > 0.10) in the T-EWE, APRON and RAM ewes (99.7+/-4.9 vs 87.2+/-4.9 vs 85.8+/-5.0 ng/mL, respectively). The time from estrus to the LH surge was not different (P > 0.10) among APRON, RAM or T-EWE ewes (10.1+/-2.2 vs 9.8+/-2.3 vs 11.6+/-2.3 h, respectively). These results show that the expression and duration of estrus are not influenced by different types of mating stimuli in hair sheep ewes. In addition, the timing and the magnitude of LH release does not appear to be influenced by mating stimuli around the time of estrus.  相似文献   

9.
This study was conducted to determine whether or not exogenous gonadotropin releasing hormone (GnRH) alters the timing or improves the synchrony of estrus, the LH surge, and ovulation following estrous synchronization in dwarf goats, and to assess the effects of season on these parameters. In January and June, estrus was synchronized in 12 Pygmy and Nigerian Dwarf goats with a 10-day progestagen sponge, 125 microg cloprostenol i.m. 48 h before sponge removal, and 300 IU equine chorionic gonadotrophin (eCG) i.m. at sponge removal. Six of the 12 goats were given 50 microg GnRH i.m. 24h after sponge removal. Onset of estrus was monitored using two males. Samples for plasma LH were collected at 2 h intervals beginning 22 h after sponge removal and ending at 48 h in January and at 58 h in June. Time of ovulation time was confirmed by laparoscopy at 36, 50, 60, and 74 h in January and at 50, 60, and 74 h in June. Administration of GnRH had no significant effect on the onset of estrus; however, it reduced the interval from sponge removal to the LH surge and improved the synchrony of the LH surge (P<0.05). Treatment with GnRH also reduced the interval from sponge removal to ovulation and improved the synchrony of ovulation (P<0.05). Season had a significant effect on the timing and the synchrony of estrus with and without GnRH treatment (P<0.05). A seasonal shift was also observed in the timing of the LH surge in the absence of GnRH treatment (P<0.05). Further research is required to determine the optimum time for GnRH administration and the minimum effective dose in dwarf goats.  相似文献   

10.
The response to the male effect was studied in two flocks of Saanen and three of Alpine goats during deep anoestrus in three consecutive years. Males and females were subjected to artificially long days for about 3 months (between December 4 and April 1) followed by a natural photoperiod. Bucks joined goats 42-63 days after the end of the long days treatment (between April 20 and June 3) and fertilisation was ensured by natural mating. In experiment 1 (n=248), female goats were treated or untreated with melatonin at the end of the long days treatment and treated or untreated for 11 days with fluorogestone acetate (FGA) before teasing. The males received melatonin implants. In experiment 2 (n=337), the factor studied was the association or non-association of the 11-day FGA treatment. Neither males nor females received melatonin implants. In experiment 3 (n=180), goats were treated for 11 days with FGA or with natural progesterone (CIDR). Neither males nor females received melatonin implants. In experiment 1, among the non-cycling goats (n=218), 99% ovulated and 81% kidded at 161+/-8 days after joining. Ninety-two percent of FGA-treated goats displayed an LH surge at 65+/-11h after teasing. Melatonin treatment did not affect any parameter but FGA advanced the kidding date. In experiment 2, 94% of the goats ovulated and 87% kidded. A major peak of conception was observed on days 3 and 8 after joining in FGA-treated and untreated goats, respectively. Among the FGA-treated goats, 83% displayed an LH surge. Over all flocks, most of the LH surges occurred over a 24-36 h interval, but the surge was initiated at different times in different flocks (36, 48 or 60 h after joining). FGA treatment did not influence the results, except for advancement of births of about 5 days. Differences among flocks were highly significant. In experiment 3, 94% of the goats displayed the LH surge, 93% ovulated and 68% kidded. Significant differences were found among flocks, but not between the FGA and CIDR groups. Bucks marked 85% of the goats 24-72 h after joining. The time interval between the detection of marked goats and detection of the LH surge depended on the time of marking (r=-0.62; p<0.05). In conclusion, treatment of both males and females goats with artificially long days followed by a natural photoperiod is very effective in inducing highly synchronous and fertile reproductive activity via the male effect in the middle of seasonal anoestrus.  相似文献   

11.
The response to the male effect was studied in two Saanen and two Alpine flocks over 5 consecutive years. Adult male and female goats were exposed to artificial long days (16h light and 8h darkness, 16L:8D) in open barns for approximately 3 months (between December 1 and April 15) followed by a natural photoperiod. Goats were treated for 11 days with fluorogestone acetate (FGA) or progesterone (CIDR) immediately before joining. Bucks carrying marking harnesses with adapted aprons joined females 49-63 days after the end of the long-day treatment (between April 30 and June 5) and were left with them for 5 days. In experiment 1 (n=142), FGA- and CIDR-treated goats were inseminated at a time based on the detection of oestrus. Two insemination groups were distinguished by the occurrence of marking over a 48-h period. Earlier (group 1) and later (group 2) buck-marked goats received one single insemination 12-24h or 0-12h after marking, respectively. Unmarked goats were inseminated along with group 2. In experiment 2 (n=344), FGA-treated goats were inseminated 52 and 70 h (52 h:70 h group) or 52 and 75 h (52 h:75 h group) after joining. In experiment 3 (n=285), FGA-treated goats were inseminated 52 h (1-AI group) or 52 and 75 h (2-AI group) after joining. In all experiments, an external control group given the "classical" insemination program was analysed. Over the 5-year period, 92% of the goats exhibited an LH surge during days 1-4 after joining and 98% of them ovulated. Eighty-seven percent of the LH surges detected in milk occurred during the 33-57 h interval after joining, indicating that ovulation took place around 45-69 h. In experiment 1, 96% of the goats were marked 22-70 h after joining. Kidding rate (KR; 78%) was similar between insemination groups and between FGA- and CIDR-treated goats (p>0.05). Most of the goats (95%) were inseminated during the interval between 15h before and up to 4h after ovulation. KR was not affected by the time between detection of marking and insemination or between insemination and ovulation (p>0.05). In experiment 2, KR (75%) was similar in both insemination groups (p>0.05). In experiment 3, KR was higher (p<0.05) in the 1-AI (71%) than the 2-AI group (57%). In all experiments, KR of the control group (68-73%) was similar to that achieved in goats induced to ovulate by the male effect. Prolificity (2.1+/-0.7) was not affected by any of the factors examined (p>0.05). In conclusion, high fertility can be achieved during anoestrus when 1 or 2 inseminations are performed over a 24h period, determined by oestrus or by the introduction of the buck, if light-treated goats receive 11-day FGA or CIDR treatment and are then induced to ovulate by the male effect.  相似文献   

12.
Mgongo FO 《Theriogenology》1988,30(5):987-995
A study was conducted on 35 East African shorthorned female goats to determine if a combination of buck teasing and low doses of a prostaglandin (PGF(2) alpha) analogue, cloprostenol, given intravulvo-submucosally (i.v.s.m.) would be suitable for synchronization of estrus. Goats were allotted, with the onset of estrus, to seven groups (n = 5 goats per group). Five of the seven groups received varying doses of cloprostenol: Group 1 (125 mug cloprostenol i.m. per goat); Group 2 (62.5 mug cloprostenol i.v.s.m. per goat); Group 3 (62.5 mug cloprostenol i.v.s.m. per goat plus buck teasing); Group 4 (31.25 mug cloprostenol i.v.s.m. per goat); Group 5 (31.25 mug cloprostenol i.v.s.m. per goat plus buck teasing); Group 6 (buck teasing); Group 7, (2 ml physiological saline i.v.s.m. per goat, control group). Plasma progesterone concentration was measured on day of treatment and for 6 d thereafter. All goats in groups 1, 2, 3 and 5 exhibited estrus within 68 h. Thus, the number of goats receiving low doses of PG-cloprostenol intravulvo-submucosally observed in estrus increased (P < 0.05) with exposure to bucks. Exhibition of behavioral signs of estrus was maximal between 2 and 20 h after onset of signs of estrus. The exposure of females to males prior to intrauterine penetration was an advantage because copious mucus eased penetration.  相似文献   

13.
Twenty-two goats were superovulated with PMSG; 84 h after the onset of estrus the goats were treated with saline solution (control group n = 7), hCG (hCG group, n = 7), or GnRH (GnRH group, n = 8). The ovaries of all the goats were laparoscopically examined 3 and 6 d after the onset of estrus. In each case the CL were counted and classified according to their appearance as normal-looking or as regressing. Blood samples for progesterone determination were collected every 12 h from Day 1 to Day 6. Premature luteal regression was considered to have occurred if progesterone concentrations declined to less than 1 ng/mL by Day 6. According to progesterone concentrations, 57.5, 0 and 37.5% of the goats underwent premature luteal regression in the control, hCG and GnRH groups, respectively. Progesterone concentrations were higher in the hCG group than in the other groups on Days 5 and 6 post estrus (P < 0.05). The control group was the only one in which there was a significant (P < 0.05) increase in the number of regressing CL between Day 3 (1.6 +/- 1.4) and Day 6 (7.3 +/- 1.4). It was also the only group in which there was a significant decrease in the number of normal-looking CL between Day 3 (12.6 +/- 2.1) and Day 6 (2.6 +/- 2.1). On Day 6 the animals treated with hCG had significantly more normal-looking CL (12.0 +/- 2.3) than those in the control group (2.6 +/- 2.1). The number of large follicles present on the ovaries on Day 6 post estrus had negative correlations with progesterone concentrations (P = 0.05) and with the number of normal-looking CL (P < 0.05). It is concluded that the administration of hCG 84 h after the onset of estrus prevents premature luteal regression in goats superovulated with PMSG.  相似文献   

14.
A specific sheep LH radioimmunoassay was validated for the measurement of goat LH, and used to monitor luteal-phase LH episodes and the preavulatory LH surge in progestagen sponge-synchronized cycling goats. No luteal-phase LH episodes were detected during 12 h of frequent (15-min) blood sampling in 2 goats. A preovulatory LH surge was recorded in 5/5 goats, with a mean amplitude of 45.4 +/- 7.2 ng/ml and a mean time of onset of 38.4 +/- 1.2 h after removal of a progestagen-impregnated sponge. In anoestrous goats, single i.v. injections of 1000 and 2000 ng GnRH induced LH episodes with a mean amplitude of 2.04 +/- 0.11 and 3.67 +/- 0.06 ng/ml respectively, but injections of 250 or 500 ng did not consistently elevate LH concentrations. Progestagen-primed, seasonally anoestrous lactating goats were treated with repeated injections of 1500 ng GnRH (every 2 h for 52 or 78 h) in May 1985 or 1986. All 10 had kidded in March of the same year, and were consequently at peak lactation at the time of GnRH treatment. A preovulatory LH surge was detected in 9 goats with a mean time of onset of 59.5 +/- 2.9 h (1985) or 39.6 +/- 3.3 h (1986) after vaginal sponge removal. All animals displayed oestrus and ovulated, and 9 of the goats were mated: in 5 of these animals pregnancies were successfully carried to term. The results show episodic LH release in response to GnRH and indicate that ovulation can be induced in seasonally anoestrous goats, even at peak lactation, and normal pregnancies may result.  相似文献   

15.
The objective of the present study was to evaluate the endocrine and behavioral features of estrous-induced Alpine goats. A total of 36 nulliparous, 40 non-lactating and 42 lactating does were treated with intravaginal 60 mg medroxyprogesterone acetate sponges for 9 d plus 200 IU eCG and 22.5 microg d-cloprostenol 24 h before sponge removal. Plasma progesterone concentration was analyzed from blood sampled on days 0 (sponge insertion), 5, 8 (cloprostenol administration) and 9 (sponge removal) in 11 nulliparous, 13 non-lactating and 11 lactating does. Estrous response did not differ (P>0.05) among nulliparous (97.2%), non-lactating (90.00%) and lactating does (85.7%). Interval to estrus and duration of estrus did not differ (P>0.05) among nulliparous (22.8+/-9.9 and 25.6+/-6.8h), non-lactating (23.7+/-15.8 and 25.0+/-6.0 h) and lactating does (22.2+/-10.4 and 24.9+/-4.2h). The accumulative percentage of does in estrus during the first 36 h after sponge removal was 88.1%. The correlation between interval to estrus and duration of estrus was r=-0.32 (P<0.001). Endogenous progesterone production is decreased until day 8 or suppressed by MAP on day 9. Conception rate was greater (P<0.01) in lactating (77.8%) than non-lactating (44.4%) but similar (P>0.05) to nulliparous (60.0%) goats. Estrus can be efficiently induced by means of hormonal treatment in goats and acceptable fertility can be obtained regardless of animal category.  相似文献   

16.
The objective of this study was to evaluate two protocols of estrous synchronization in non-lactating Toggenburg goats. Nineteen goats were allocated, according to body condition score and weight, into two groups (A and B) and evaluated utilizing two treatments (T1 and T2). Animals in the T1 and T2 groups received an intravaginal sponge (day 0) containing 60 mg medroxyprogesterone acetate for 6 and 9 days, respectively, plus 200 IU equine chorionic gonadotrophin (eCG) and 22.5 microg cloprostenol 24 h before sponge removal. Females were bred only at the second estrus and received 22.5 microg cloprostenol 7 days later to prevent pregnancy. Percentages of animals in estrus did not differ (P > 0.05) between T1 (89.5%) and T2 (84.2%). From 33 females in estrus (T1 + T2), 28 (84.8%), 2 (6.1%), and 3 (9.1%) were identified in estrus at 06:00, 12:00 and 18:00 h, respectively. Additionally, 6 (18.2%), 0 (0.0%) and 27 (81.8%) were no longer detected to be on estrus at 06:00, 12:00 and 18:00 h, respectively. Interval from sponge removal and the onset of estrus (IE) did not differ (P > 0.05) between T1 (46.1 +/- 15.0 h) and T2 (53.6 +/- 16.1 h). Duration of estrus did not differ (P > 0.05) between T1 (30.0 +/- 12.0 h) and T2 (27.2 +/- 11.2 h). Both protocols were effective in inducing estrus in non-lactating goats. The onset and end of the estrus relative to hour of the day should be considered in estrous detection, natural breeding, and artificial insemination in goats.  相似文献   

17.
This study assesses the effectiveness of a method designed to induce and synchronize ovulation in goats during the non-breeding season, allowing for systematic timed artificial insemination (AI), without the need for prior estrus detection. This method (IMA.PRO2) induces ovulation through the "male effect" and a single 25 mg dose of progesterone given at the time of buck exposure, and early lysis of the induced corpus luteum by the administration of 75 microg of cloprostenol 9 days later. The method was tested in three separate experiments. In experiment 1, estrus was detected in 87.5% of the treated goats 37.0 +/- 1.4 h after cloprostenol administration, with the preovulatory LH surge occurring 40.5 +/- 1.6 h after the cloprostenol injection. In experiment 2, data from 503 does revealed no significant differences in fertility rates between two groups inseminated 48 h (65.5+/-4.0%) or 52 h (63+/-3.0%) after receiving cloprostenol. In experiment 3, 2184 does, comprising 37 replicate groups on 12 farms, were randomly assigned to two trial subgroups. Does in the first subgroup were treated with the IMA.PRO2 method and goats from the second group were given intravaginal progestagens for 11 days, plus 350 IU of eCG and 75 microg of cloprostenol on Day 9 of this treatment. Goats from both subgroups were cervically inseminated at the same time, 50 h after cloprostenol administration in the first group and 46 h after sponge removal in the second. The pregnancy rate achieved with the new method was 64.6%, significantly higher than the yield observed for the use of progestagens plus eCG (46.8%, P<0.01). The simple method proposed as an alternative to the use of progestagen-eCG treatment provides good pregnancy rates to AI undertaken at a fixed time point, and reduces the amount of hormone needed to synchronize estrus in the animals.  相似文献   

18.
The effects of acute neutralization of endogenous inhibin on ovulation rate and circulating FSH levels were investigated. Nine or ten days after estrus, 5 heifers were given a single injection of 75 ml iv inhibin antiserum produced in a castrated male goat, while another 5 were given the same amount of a castrated male goat serum. All heifers were given injections of PGF2alpha im at 48 h and 60 h after the serum injection. Those exhibiting an estrus were artificially inseminated with frozen-thawed semen. Seven or eight days after the insemination, ova or embryos were collected using a non-surgical method. Administration of inhibin antiserum resulted in a significant increase in the number of medium-sized follicles compared with the number in the control animals. The number of large follicles in the inhibin-neutralized animals was 4.8 +/- 2.4 (mean +/- SEM; n = 5) on the day of estrus, while there was a single large follicles in the ovaries of control animals. Seven or eight days after estrus, 3 to 16 ova or embryos were recovered from 4 of 5 animals, and 64 % of the total ova/embryos were transferable. Administration of inhibin antiserum produced a significant increase in the concentrations of plasma FSH from 12 to 72 h after the serum injection compared with the levels in the control animals (P < 0.05). After the onset of estrus, preovulatory LH and FSH surges were noted in inhibin-neutralized animals and magnitude of the rise in each hormone was similar to the control animals. The present study demonstrates that a single injection of the inhibin antiserum induces multiple ovulations probably by enhancing FSH secretion, and that recovery of embryos is equal to that observation after an ordinary FSH treatment.  相似文献   

19.
Oocytes collected by laparoscopic ovum pick-up (LOPU) were successfully used to produce transgenic goats by pronuclear microinjection of in vitro zygotes. Estrus cycles of 109 donor goats were synchronized using intravaginal sponges impregnated with 60 mg of medroxyprogesterone acetate and treatment with 70 mg NIH-FSH-P1 and 300 IU eCG to stimulate follicular development. Follicles were aspirated under laparoscopic observation. In vitro maturation (IVM) of oocytes was performed in M199 supplemented with hormones, kanamycin and 10% estrus goat serum. Following IVM, oocytes were cocultured with capacitated semen in TALP supplemented with 20% estrus goat serum for 15-20 h. The resulting zygotes were microinjected with a linear DNA fragment. In total, 3293 follicles were aspirated (15.7+/-9 follicles aspirated per donor) and 2823 oocytes were recovered (13.4+/-8 oocytes per donor). A total of 1366 zygotes were microinjected and transferred into 219 recipient goats by midventral laparotomy (average 6.2 embryos per recipient). A total of 150 kids were born, of which 9 (6 M: 3 F) were confirmed to be transgenic by PCR and Southern blotting analyses. These results demonstrate that acceptable transgenesis rates can be obtained in goats by DNA microinjection of in vitro produced zygotes.  相似文献   

20.
The male effect is currently only used during seasonal or lactational anoestrus because the response is thought to be blocked in cyclic females by periods of elevated progesterone. In this study, we tested whether cyclic, female goats would respond to male exposure with an increase in pulsatile LH secretion. During May (breeding season; Southern Hemisphere) the cycles of 16 Australian Cashmere goats were synchronised using intravaginal progesterone pessaries. Pessary insertion was staggered to produce groups in their early luteal (EL; n=8) and late luteal phases (LL; n=8). The LL group was retrospectively subdivided into mid-luteal (ML; n=4) and late luteal (LL; n=4) groups due to differences in oestrous cycle length that emerged during the study. Male exposure stimulated an increase in LH pulse frequency in the EL and LL groups (P<0.01) but not in the ML group (P>0.1). This increase was accompanied by an increase in basal and mean concentrations of LH in the LL group (P<0.05) but not in EL (P<0.1) or ML (P>0.1) group. There was no effect of male exposure on LH pulse amplitude (P>0.1). Progesterone concentrations differed among all groups on the day of male exposure (P<0.05) and declined significantly over the 12-h sampling period in the LL group (P<0.05). Prolactin concentrations declined in the EL group but did not change significantly in the ML or LL group. In conclusion, male exposure induced an increase in pulsatile LH in goats in the early and late luteal phases of the oestrous cycle. The high concentrations of progesterone in females in the mid-luteal phase appeared to block the male effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号