首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tandem affinity purification (TAP) has been used to isolate proteins that interact with human hepatic lipase (HL) during its maturation in Chinese hamster ovary cells. Using mass spectrometry and Western blotting, we identified 28 proteins in HL-TAP isolated complexes, 16 of which localized to the endoplasmic reticulum (ER), the site of HL folding and assembly. Of the 12 remaining proteins located outside the ER, five function in protein translation or ER-associated degradation (ERAD). Components of the two major ER chaperone systems were identified, the BiP/Grp94 and the calnexin (CNX)/calreticulin (CRT) systems. All factors involved in CNX/CRT chaperone cycling were identified, including UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT), glucosidase II, and the 57 kDa oxidoreductase (ERp57). We also show that CNX, and not CRT, is the lectin chaperone of choice during HL maturation. Along with the 78 kDa glucose-regulated protein (Grp78; BiP) and the 94 kDa glucose-regulated protein (Grp94), an associated peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase were also detected. Finally, several factors in ERAD were identified, and we provide evidence that terminally misfolded HL is degraded by the ubiquitin-mediated proteasomal pathway. We propose that newly synthesized HL emerging from the translocon first associates with CNX, ERp57, and glucosidase II, followed by repeated posttranslational cycles of CNX binding that is mediated by UGGT. BiP/Grp94 may stabilize misfolded HL during its transition between cycles of CNX binding and may help direct its eventual degradation.  相似文献   

2.
Trimming of mannose residues from the N-linked oligosaccharide precursor is a stringent requirement for glycoprotein endoplasmic reticulum (ER)-associated degradation (ERAD). In this paper, we show that, surprisingly, overexpression of ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) or its up-regulation by IRE1, as occurs in the unfolded protein response, overrides this requirement and renders unnecessary the expression of ER mannosidase I. An EDEM1 deletion mutant lacking most of the carbohydrate-recognition domain also accelerated ERAD, delivering the substrate to XTP3-B and OS9. EDEM1 overexpression also accelerated the degradation of a mutant nonglycosylated substrate. Upon proteasomal inhibition, EDEM1 concentrated together with the ERAD substrate in the pericentriolar ER-derived quality control compartment (ERQC), where ER mannosidase I and ERAD machinery components are localized, including, as we show here, OS9. We suggest that a nascent glycoprotein can normally dissociate from EDEM1 and be rescued from ERAD by reentering calnexin-refolding cycles, a condition terminated by mannose trimming. At high EDEM1 levels, glycoprotein release is prevented and glycan interactions are no longer required, canceling the otherwise mandatory ERAD timing by mannose trimming and accelerating the targeting to degradation.  相似文献   

3.
Previously we showed that two antithrombin mutants were degraded through an endoplasmic reticulum (ER)-associated degradation (ERAD) pathway [F. Tokunaga et al., FEBS Lett. 412 (1997) 65]. Here, we examined the combined effects of inhibitors of glycosidases, protein synthesis, proteasome, and tyrosine phosphatase on ERAD of a Glu313-deleted (DeltaGlu) mutant of antithrombin. We found that kifunensine, an ER mannosidase I inhibitor, suppressed ERAD, indicating that specific mannose trimming plays a critical role. Cycloheximide and puromycin, inhibitors of protein synthesis, also suppressed ERAD, the effects being cancelled by pretreatment with castanospermine. In contrast, kifunensine suppressed ERAD even in castanospermine-treated cells, suggesting that suppression of ERAD does not always require the binding of lectin-like ER chaperones-like calnexin and/or calreticulin. These results indicate that, besides proteasome inhibitors, inhibitors of ER mannosidase I and protein synthesis suppress ERAD of the antithrombin deltaGlu mutant at different stages, and processing of N-linked oligosaccharides highly correlated with the efficiency of ERAD.  相似文献   

4.
To examine the role of early carbohydrate recognition/trimming reactions in targeting endoplasmic reticulum (ER)-retained, misfolded glycoproteins for ER-associated degradation (ERAD), we have stably expressed the cog thyroglobulin (Tg) mutant cDNA in Chinese hamster ovary cells. We found that inhibitors of ER mannosidase I (but not other glycosidases) acutely suppressed Cog Tg degradation and also perturbed the ERAD process for Tg reduced with dithiothreitol as well as for gamma-carboxylation-deficient protein C expressed in warfarin-treated baby hamster kidney cells. Kifunensine inhibition of ER mannosidase I also suppressed ERAD in castanospermine-treated cells; thus, suppression of ERAD does not require lectin-like binding of ER chaperones calnexin and calreticulin to monoglucosylated oligosaccharides. Notably, the undegraded protein fraction remained completely microsome-associated. In pulse-chase studies, kifunensine-sensitive degradation was still inhibitable even 1 h after Tg synthesis. Intriguingly, chronic treatment with kifunensine caused a 3-fold accumulation of Cog Tg in Chinese hamster ovary cells and did not lead to significant induction of the ER unfolded protein response. We hypothesize that, in a manner not requiring lectin-like activity of calnexin/calreticulin, the recognition or processing of a specific branched N-linked mannose structure enhances the efficiency of glycoprotein retrotranslocation from the ER lumen.  相似文献   

5.
In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY* in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD.  相似文献   

6.
ATP-binding cassette (ABC) G5 (G5) and ABCG8 (G8) heterodimerize and function as sterol transporter that promote biliary excretion of neutral sterols. Both G5 and G8 interact with a lectin-like chaperone, calnexin (CNX), in the endoplasmic reticulum (ER) but the significance of this interaction remains unclear. Here, we show that not only CNX, but also its homologue calreticulin (CRT), is involved in the biosynthesis of G5/G8 sterol transporter. Both CNX and CRT interacted with immature forms of G5 and G8, and stimulated their productive folding by inhibiting their degradation. Interestingly, CRT predominantly enhanced the cell surface expression of mature G5/G8 whereas CNX did not have a similar effect. Inhibitors of N-glycan processing indicated that quality control of G5 and G8 might be differentially regulated in the ER. These findings clarify the role of CNX and CRT in the biosynthesis and quality control of G5/G8 sterol transporter.  相似文献   

7.
Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.  相似文献   

8.
D N Hebert  B Foellmer    A Helenius 《The EMBO journal》1996,15(12):2961-2968
Calnexin (CNX) and calreticulin (CRT) are molecular chaperones that bind preferentially to monoglucosylated trimming intermediates of glycoproteins in the endoplasmic reticulum. To determine their role in the maturation of newly synthesized glycoproteins, we analyzed the folding and trimerization of in vitro translated influenza hemagglutinin (HA) in canine pancreas microsomes under conditions in which HA's interactions with CNX and CRT could be manipulated. While CNX bound to all folding intermediates (IT1, IT2 and NT), CRT was found to associate preferentially with the earliest oxidative form (IT1). If HA's binding to CNX and CRT was inhibited using a glucosidase inhibitor, castanospermine (CST), the rate of disulfide formation and oligomerization was doubled but the overall efficiency of maturation of HA decreased due to aggregation and degradation. If, on the other hand, HA was arrested in CNX-CRT complexes, folding and trimerization were inhibited. This suggested that the action of CNX and CRT, like that of other chaperones, depended on an 'on-and-off' cycle. Taken together, these results indicated that CNX and CRT promote correct folding by inhibiting aggregation, preventing premature oxidation and oligomerization, and by suppressing degradation of incompletely folded glycopolypeptides.  相似文献   

9.
The degradation of misfolded and unassembled proteins by the endoplasmic reticulum (ER)-associated degradation (ERAD) has been shown to occur mainly through the ubiquitin-proteasome pathway after transport of the protein to the cytosol. Recent work has revealed a role for N-linked glycans in targeting aberrant glycoproteins to ERAD. To further characterize the molecular basis of substrate recognition and sorting during ERAD in mammalian cells, we expressed a mutant yeast carboxypeptidase Y (CPY*) in CHO cells. CPY* was retained in the ER in un-aggregated form, and degraded after a 45-min lag period. Degradation was predominantly by a proteasome-independent, non-lysosomal pathway. The inhibitor of ER mannosidase I, kifunensine, blocked the degradation by the alternate pathway but did not affect the proteasomal fraction of degradation. Upon inhibition of glucose trimming, the initial lag period was eliminated and degradation thus accelerated. Our results indicated that, although the proteasome is a major player in ERAD, alternative routes are present in mammalian cells and can play an important role in the disposal of both glycoproteins and non-glycoproteins.  相似文献   

10.
A soluble form of ribophorin I (RI(332)) is rapidly degraded in Hela and Chinese hamster ovary (CHO) cells by a cytosolic proteasomal pathway, and the N-linked glycan present on the protein may play an important role in this process. Specifically, it has been suggested that endoplasmic reticulum (ER) mannosidase I could trigger the targeting of improperly folded glycoproteins to degradation. We used a CHO-derived glycosylation-defective cell line, MadIA214, for investigating the role of mannosidase(s) as a signal for glycoprotein degradation. Glycoproteins in MadIA214 cells carry truncated Glc(1)Man(5)GlcNAc(2) N-glycans. This oligomannoside structure interferes with protein maturation and folding, leading to an alteration of the ER morphology and the detection of high levels of soluble oligomannoside species caused by glycoprotein degradation. An HA-epitope-tagged soluble variant of ribophorin I (RI(332)-3HA) expressed in MadIA214 cells was rapidly degraded, comparable to control cells with the complete Glc(3)Man(9)GlcNAc(2) N-glycan. ER-associated degradation (ERAD) of RI(332)-3HA was also proteasome-mediated in MadIA214 cells, as demonstrated by inhibition of RI(332)-3HA degradation with agents specifically blocking proteasomal activities. Two inhibitors of alpha1,2-mannosidase activity also stabilized RI(332)-3HA in the glycosylation-defective cell line. This is striking, because the major mannosidase activity in the ER is the one of mannosidase I, specific for a mannose alpha1,2-linkage that is absent from the truncated Man(5) structure. Interestingly, though the Man(5) derivative was present in large amounts in the total protein pool, the two major species linked to RI(332)-3HA shortly after synthesis consisted of Glc(1)Man(5 )and Man(4), being replaced by Man(4 )and Man(3) when proteasomal degradation was inhibited. In contrast, the untrimmed intermediate of RI(332)-3HA was detected in mutant cells treated with mannosidase inhibitors. Our results unambiguously demonstrate that an alpha1,2-mannosidase that is not ER mannosidase I is involved in ERAD of RI(332-)3HA in the glycosylation-defective cell line, MadIA214.  相似文献   

11.
Apolipoprotein (a) (apo(a)) is a component of the atherogenic lipoprotein, Lp(a). The efficiency with which apo(a) escapes the endoplasmic reticulum (ER) and is secreted by the liver is a major determinant of plasma Lp(a) levels. Apo(a) contains a series of domains homologous to plasminogen kringle (K) 4, each of which possesses a potential lysine-binding site. By using primary mouse hepatocytes expressing a 17K4 human apo(a) protein, we found that high concentrations (25-200 mM) of the lysine analog, 6-aminohexanoic acid (6AHA), increased apo(a) secretion 8-14-fold. This was accompanied by a decrease in apo(a) presecretory degradation. 6AHA inhibited accumulation of apo(a) in the ER induced by the proteasome inhibitor, lactacystin. Thus, 6AHA appeared to inhibit degradation by increasing apo(a) export from the ER. Significantly, 6AHA overcame the block in apo(a) secretion induced by the ER glucosidase inhibitor, castanospermine. 6AHA may therefore circumvent the requirement for calnexin and calreticulin interaction in apo(a) secretion. Sucrose gradients and a gel-based folding assay were unable to detect any influence of 6AHA on apo(a) folding. However, non-covalent or small, disulfide-dependent changes in apo(a) conformation would not be detected in these assays. Proline also increased the efficiency of apo(a) secretion. We propose that 6AHA and proline can act as chemical chaperones for apo(a).  相似文献   

12.
In the endoplasmic reticulum (ER), misfolded proteins are retrotranslocated to the cytosol and degraded by the proteasome in a process known as ER-associated degradation (ERAD). Early in this pathway, a proposed lumenal ER lectin, EDEM, recognizes misfolded glycoproteins in the ER, disengages the nascent molecules from the folding pathway, and facilitates their targeting for disposal. In humans there are a total of three EDEM homologs. The amino acid sequences of these proteins are different from other lectins but are closely related to the Class I mannosidases (family 47 glycosidases). In this study, we characterize one of the EDEM homologs from Homo sapiens, which we have termed EDEM2 (C20orf31). Using recombinantly generated EDEM2, no alpha-1,2 mannosidase activity was observed. In HEK293 cells, recombinant EDEM2 is localized to the ER where it can associate with misfolded alpha1-antitrypsin. Overexpression of EDEM2 accelerates the degradation of misfolded alpha1-antitrypsin, indicating that the protein is involved in ERAD.  相似文献   

13.
Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys27 to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys27 reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys27, pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys27 precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys27 variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.  相似文献   

14.
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.  相似文献   

15.
The Golgi complex has been implicated as a possible component of endoplasmic reticulum (ER) glycoprotein quality control, although the elucidation of its exact role is lacking. ERManI, a putative ER resident mannosidase, plays a rate-limiting role in generating a signal that targets misfolded N-linked glycoproteins for ER-associated degradation (ERAD). Herein we demonstrate that the endogenous human homologue predominantly resides in the Golgi complex, where it is subjected to O-glycosylation. To distinguish the intracellular site where the glycoprotein ERAD signal is generated, a COPI-binding motif was appended to the N terminus of the recombinant protein to facilitate its retrograde translocation back to the ER. Partial redistribution of the modified ERManI was observed along with an accelerated rate at which N-linked glycans of misfolded α1-antitrypsin variant NHK were trimmed. Despite these observations, the rate of NHK degradation was not accelerated, implicating the Golgi complex as the site for glycoprotein ERAD substrate tagging. Taken together, these data provide a potential mechanistic explanation for the spatial separation by which glycoprotein quality control components operate in mammalian cells.  相似文献   

16.
The quality control system in the secretory pathway can identify and eliminate misfolded proteins through endoplasmic reticulum-associated degradation (ERAD). ERAD is thought to occur by retrotranslocation through the Sec61 complex into the cytosol and degradation by the proteasome. However, the extent of disassembly of oligomeric proteins and unfolding of polypeptide chains that is required for retrotranslocation is not fully understood. In this report we used a glycosylation mutant of the p41 isoform of invariant chain (Ii) to evaluate the ability of ERAD to discriminate between correctly folded and misfolded subunits in an oligomeric complex. We show that loss of glycosylation at position 239 of p41 does not detectably affect Ii trimerization or association with class II but does result in a defect in endoplasmic reticulum export of Ii that ultimately leads to its degradation via the ERAD pathway. Although class II associated with the mutated form of p41 is initially retained in the endoplasmic reticulum, it is subsequently released and traffics through the Golgi to the plasma membrane. ERAD-mediated degradation of the mutant p41 is dependent on mannose trimming and inhibition of mannosidase I stabilizes Ii. Interestingly, inhibition of mannosidase I also results in prolonged association between the mutant Ii and class II, indicating that complex disassembly and release of class II is linked to mannosidase-dependent ERAD targeting of the misfolded Ii. These results suggest that the ERAD machinery can induce subunit disassembly, specifically targeting misfolded subunits to degradation and sparing properly folded subunits for reassembly and/or export.  相似文献   

17.
18.
Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.  相似文献   

19.
Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes.  相似文献   

20.
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β‐catenin by the ubiquitin‐proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)‐associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP‐dependent manner. Ubiquitination of Evi involves the E2‐conjugating enzyme UBE2J2 and the E3‐ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD‐dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号