首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

2.
B. V. Timms 《Hydrobiologia》1981,79(3):233-238
Lakes Purrembete, Bullenmerri and Gnotuk are relatively deep lakes with salinities of 0.4, 8 and 58 respectively. From Carbon-14 experiments conducted monthly over a year annual primary production was 96.2, 182.1 and 90.1 gCm-2. These values correlate well with chlorophyll-a in Purrumbete and Bullenmerri, but not in Gnotuk. There is considerable dark fixation in both the saline lakes.  相似文献   

3.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   

4.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   

5.
The influence of salinity on the performance of the sibling species Tisbe holothuriae and T. battagliai in pure and mixed cultures was studied, using laboratory stocks adapted to 32 for over 175 generations. Cohort studies show that T. holothuriae has higher growth rates (Ro and r) at 32, T. battagliai at 20 The latter's life cycle is much less affected by the difference in salinity. De Wit replacement series were used to study competitive interactions. Without water renewal, T. holothuriae eliminates its sibling species in less than 2 generations, apparently through chemical interference. With water renewal, i.e. when exploitation competition becomes relatively more important, T. holothuriae still proves superior at 27 but the two species are competitively almost equal at 20. The two species cooccur in situ during autumn, but their differential predominance at different sites is not explained by the effect of salinity.  相似文献   

6.
Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems   总被引:10,自引:0,他引:10  
Summary The ratio of stable carbon isotopes (13C) in plants and animals from Malaysian mangrove swamps, coastal inlets, and offshore waters was determined. Vascular plants of the swamps were isotopically distinct ( x±s.d.=-27.1±1.2) from plankton (-21.0±0.3) and other algae (-18.7±2.2). Animals from the swamps (-20.9±4.1) and inlets (-19.8±2.5) had a wide range of isotope ratios (-28.6 to-15.4), indicating consumption of both mangrove and algal carbon. Several commercially important species of bivalves, shrimp, crabs, and fish obtained carbon from mangrove trees. Mangrove carbon was carried offshore as detritus and was isotopically distinguishable in suspended particulate matter and sediments. Animals collected from 2 to 18 km offshore, however, showed no isotopic evidence of mangrove carbon assimilation, with ratios (-16.5±1.1, range-19.1 to-13.1) virtually identical to those reported for similar animals from other plankton-based ecosystems. Within groups of animals, isotope ratios reflected intergencric and interspecific differences in feeding and trophic position. In particular, there was a trend to less negative ratios with increasing trophic level.  相似文献   

7.
Eriksen  J.  Høgh-jensen  H. 《Plant and Soil》1998,205(1):67-76
Biological N2 fixation in clover is an important source of N in low external-N input farming systems. Using the natural 15N-abundance method, variations in N2 fixation were investigated in grazed and mowed plots of a ryegrass/white clover field. Ryegrass 15N varied considerably, from 0.2 to 5.6 under mowed conditions and from –3.3 to 11.6 under grazed conditions. Variations in 15N white clover were lower than in ryegrass, especially in the mowed plots (SE = 0.05, n = 20). The variations in the percentage of nitrogen derived from the atmosphere (%Ndfa) in white clover were highest in the grazed plots where it ranged from 12 to 96% (mean = 64%) compared with the mowed plots where it ranged from 64 to 92% (mean = 79%). Thus, the N2 fixation per unit white clover DM in the grazed ley was lower and more variable than under mowing conditions.Urine from dairy cows equivalent to 0, 200, 400 and 800 kg N ha-1 was applied to a ryegrass/white clover plot 6, 4 or 2 weeks before harvest. Without urine application 15N of ryegrass was positive. By increasing urine application (15N = –1) two weeks before sampling, the 15N of ryegrass decreased strongly to about –7 (P < 0.001). However, this effect was only observed when urine was applied two weeks before sampling. When applying 800 kg N four and six weeks before sampling, 15N in ryegrass was not significantly different from the treatment without urine application. White clover 15N was unaffected by whatever changes occurred in 15N of the plant-available soil N pool (reflected in 15N of ryegrass). This indicates that within the time span of this experiment, N2 fixation per unit DM was not affected by urine. Therefore, newly deposited urine may not be the main contributing factor to the variation in %Ndfa found in the grazed fields. This experiment suggested that the natural abundance method can be applied for estimating %Ndfa without disturbance in natural animal-grazed systems.  相似文献   

8.
In the Baltic Sea area, the cladoceran Daphnia magna is commonly found in brackish water rockpools and it has been suggested that salinity is one of the niche dimensions that affects the distribution of the species. The salinity tolerance of D. magna was studied both in physiological and life history experiments. The experimental salinities were freshwater, 4S and 8S. The highest respiration and ammonium excretion rates were measured in the freshwater treatment with decreasing respiration and ammonium excretion rates at higher salinities. The lowest O/N ratio (oxygen consumption to ammonium excretion), describing the metabolic status of an organism, was obtained at 8S, although the only significant differences were detected when comparing to 4S treatments. Individual growth rate, reproductive output and population growth rate were highest at 4S. At 8S growth and reproduction were reduced as compared to freshwater and 4S. The life history parameters in the performed experiments indicated higher fitness (expressed as r) as well as more favourable conditions for growth and reproduction at 4S, whereas the O/N ratio was more difficult to interpret and, in this case, gave a less clear picture of the salinity influence.  相似文献   

9.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

10.
Zusammenfassung 1. Es wurde untersucht, welchen Einfluß kurzfristige und langfristige Salzgehaltsveränderungen auf verschiedene Standortformen der RotalgeDelesseria sanguinea und der BraunalgeFucus serratus haben. Als Kriterium des Lebenszustandes wurde die photosynthetische Leistung gewählt. Die Algen wurden folgenden Salzgehaltskonzentrationen ausgesetzt: 0, 5, 10, 15, 20, 30, 40, 50 S.2. Die Versuche ergaben, daß kurzfristige Konzentrationsveränderungen (30 min) — sowohl Erniedrigung als auch Erhöhung des Salzgehaltes — die photosynthetische Leistung stimulieren. Ein langfristiger Aufenthalt (24 Std) unter den veränderten Bedingungen bewirkt, sofern diese innerhalb der Toleranzgrenzen der Algen liegen, einen Ausgleich der anfänglichen Stimulation. Außerhalb der Toleranzgrenzen liegende Konzentrationen rufen nach der Stimulation eine Leistungsdepression hervor. Bei Rückübertragung in den Ausgangssalzgehalt sind die Depressionen teilweise reversibel.3. Im hypotonischen Milieu verhalten sich die Delesserien der verschiedenen Standorte (Helgoland, Kattegat, Kieler Bucht) gleich: in 5 S treten starke Depressionen auf. Nordsee-Delesserien sind im hypertonischen Milieu weniger empfindlich, sie zeigen noch bei 50 S eine gesteigerte photosynthetische Leistung. In diesem Bereich sind die Ostseeformen schon schwer geschädigt. Am empfindlichsten gegenüber allen Konzentrationsänderungen ist die BrackwasserformDelesseria sanguinea formalanceolata aus der Kieler Bucht.4.Fucus serratus aus dem Litoral von Helgoland zeichnet sich im Gegensatz zu der submers lebenden Form der Ostsee, die sich ähnlich wieDelesseria verhält, in allen untersuchten Konzentrationsbereichen durch eine unveränderte photosynthetische Leistung aus. Die beiden Standortformen vonFucus entsprechen gemäß der Einteilung vonMontfort (1931) dem resistenten Typ und dem Stimulations-Depressionstyp.
On the influence of salinity on photosynthetic performance of various ecotypes ofDelesseria sanguinea andFucus serratus
The phaeophyceanF. serratus and the rhodophyceanD. sanguinea came from the North Sea (30 S) and the Baltic Sea (15 S). The activity of photosynthesis was taken as a criterion of algae vitality. Experiments were made in salinity concentrations of 0, 5, 10, 15, 20, 30, 40 and 50 S. Thirty-minute exposures to sub- or supranormal salinities stimulate photosynthesis. Within their physiological salinity ranges the algae assume normal photosynthetic rates within 24 hours. Extreme salinities cause a reduction in photosynthetic activity; this reduction mostly disappears, however, after re-transfer into normal salinity conditions. At 5 S all test individuals ofDelesseria from different locations exhibit a reduction of photosynthetic rates. At 50 SDelesseria from the North Sea still show increased activity, whileDelesseria from the Baltic are already severely damaged. The brackish-water formD. sanguinea (formalanceolata) is most sensitive to salinity variations. The photosynthetic activity ofF. serratus from Helgoland does not vary in all salinities employed. The range of test salinities corresponds to that of the habitat in the littoral zone, where high salinities occur during air exposure, and low salinities, during rainfall. By contrast, inF. serratus from the Baltic Sea occurring only in the sublittoral zone, photosynthetic rates are similarly affected by salinity as inDelesseria.
  相似文献   

11.
Ursula Seelemann 《Oecologia》1968,1(1-2):130-154
Zusammenfassung Die Überwindung der biologischen Grenze zwischen Meer und Land durch Mollusken ist bisher nur wenig im Hinblick auf physiologische Umstellungen untersucht worden. Unter diesem Aspekt wurden Experimente durchgeführt an Alderia modesta, einem amphibisch lebenden Opisthobranchier des unteren Supralitorals, und an Ovatella myosotis, einer Pulmonate, die im oberen Supralitoral vorkommt. Alderia zeigt eine relativ enge Salinitätstoleranz. Zu hohe und zu niedrige Salzgehalte hemmen die Entwicklung, führen zu Mißbildungen bei der Embryonalentwicklung und lassen adulte tiere rasch eingehen. In Beziehung zu der Salinität der angrenzenden Gewässer (Brackwasser der Ostsee und der Ästuare, Meerwasser der Nordsee) existieren verschiedene Biotypen, die auf Aussüßung und hohe Salzkonzentration unterschiedlich reagieren.Die weiter ins Supralitoral vorgedrungene Ovatella myositis hat eine wesentlich breitere Salinitätstoleranz. Schädigungen der Adulten treten auf Süßwasser nicht, auf Salzwasser erst oberhalb von 55 auf. Durch schrittweise Adaptation können höhere Konzentrationen ertragen werden. Der Toleranzunterschied zwischen den untersuchten Populationen ist genetisch bedingt. Eiablage, Embryonalentwicklung und Wachstum erfolgen im Bereich zwischen 5 und mindestens 50 Substratsalinität.Physiologisch wird diese große Salinitätstoleranz durch ein fast durchgehendes poikilosmotisches Verhalten ermöglicht. Auf sehr ausgesüßtem Substrat sind die Schnecken stark hypertonisch (auf Süßwasser hat das Binnenmedium auf 7), im ganzen übrigen Bereich weniger stark (3–4 über der Substratsalinität). Im oberen Extrembereich vermögen die Tiere diese Hypertonie offenbar nur schwer aufrechtzuerhalten (vgl. S. 149).Die Veränderungen von Gastropoden auf dem Wege vom Meer über das Supralitoral zum Land werden diskutiert; im Gebiet der Salzwiesen läßt sich ein günstigeres Schema zu dieser Frage aufstellen als bei den bisher meist zitierten Littorinen.
On the emigration of gastropodes from the sea: Studies on Alderia modesta and Ovatella myosotis
Summary Up to now little attention has been paid to the phylogenetic emigration of gastropods from the sea: almost nothing is known about the physiological changes which enable snails to live in terrestrial habitats. To help solve this question, experiments were carried out on Alderia modesta, an opisthobranch slug of the lower supralittoral, and Ovatella myositis, a primitive pulmonate snail of the upper supralittoral. In each case two subspecies were studied.North Sea Alderias differ from their Baltic counterparts in size and salinitytolerance. The difference in size between Ovatella of the Mediterranean and of the Baltic is very slight. There is a marked difference, however, in the salinity-tolerance. Alderia modesta survives in a comparatively narrow range of different salinities. The optimum is between 10 and 20 for Baltic specimens and between 15 and 35 for those of the North Sea. The results are the same in and out of water. Ovatella can live on a freshwater substratum as well as on 55. Specimens of the Mediterranean can even become adapted to 90. Flooded with water of differrent salinities the tolerated range becomes markedly smaller. Eggs are produced between 5 and 50 (Baltic specimens) or 5 and 65 (Mediterranean specimens). All eggs develop without being damaged between 5 and 40 and 10 and 45 respectively. The optimal salinity-concentration for growth and egg-production is 10. Salinity-concentrations below and above these marks disturb the development. In one spawn-mass some eggs cleave normally, others become deformed, and again others do not cleave at all. This heterogeneous reaction points to the existence of something like a physiological polymorphism in regard to salinity-tolerance. The salinity-concentration of the blood of Ovatella was measured after a long-term acclimatisation. Ovatella is poikilosmotic and slightly hypertonic (3–4) throughout almost the whole range of salinities it tolerates. On extremely low concentrations it becomes more hypertonie; on extremely high concentrations it becomes nearly isotonic.
  相似文献   

12.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

13.
Apostichopus (= Stichopus) japonicus blastulae and gastrulae were acclimated for 18 h to salinities of 32 (control), 24 and 22 (the lower limit of the range of tolerance), and 20 (below the range of tolerance). Acclimation to 20 resulted in the appearance of teratic larvae, most of which subsequently died. Acclimation to 24, 22, and 20 led to a shift in the range of tolerance of the larvae at further stages of development. With a decrease in salinity, acclimated larvae developed more successfully than unacclimated larvae. Acclimated larvae attained the pentactula stage and settled at a salinity range of 32–20; unacclimated larvae, at 32–22. At different stages of development, acclimated larvae survived greater decreases in salinity than unacclimated larvae. The acclimation effects could be traced up to metamorphosis and settling, i.e., two weeks after the end of the acclimation process.  相似文献   

14.
Samples of background air were collected in thelower troposphere of the Northern (high Arctic,northern Ontario, Vancouver and Houston) andSouthern (Baring Head, New Zealand) Hemispheresover the period July 1999 until March 2001.These samples were analysed for the stablecarbon isotope ratios of1,1,1-trichlorotrifluoroethane (CFC113) andCH3Cl using a gaschromatography-continuous flow on-linecombustion isotope ratio mass spectrometrycombination. For CH3Cl the global averageof the stable carbon isotope ratio is –36.2± 0.3 (error of mean). The average isbased on 78 data points, standard deviation forall measurements is 2.3, and the 90%confidence interval is –35.8 to –36.6.However, the number of data points from theSouthern Hemisphere is rather limited and thusthis observation is not necessarilyrepresentative for the entire SouthernHemisphere. A simple isotopic budget ofCH3Cl shows the most important parametersneeding to be defined are the kinetic isotopeeffect of CH3Cl destruction by OH radicalsand the source composition of CH3Clemitted by the oceans and biomass burning ofC-4 plants. Present budgets of atmosphericCH3Cl show a significant deficit in thesource strength. We estimate that the averagestable carbon isotope ratio of the additionalCH3Cl emissions required to balance thebudget is –41.9 ± 7.8. The averageCFC113 isotopic composition based on 38measurements is –23.3 ± 1.6 (error ofmean), = 9.6 with no significantdifference between the hemispheres.  相似文献   

15.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

16.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

17.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

18.
The osmoregulatory capacity of two oligochaete species, Enchytraeus albidus Henle, 1837, and Heterochaeta costata (Claparède, 1863), was investigated by direct measurements of the osmolality of the coelomic fluid. Terrestrial and marine (28 S) populations of Enchytraeus albidus and a brackish water population (14 S) of H. costata were used in the study. The range of salinity acclimation investigated was 0–40. The response to osmotic stress was measured (a) after a long-term maintenance (>14 days) in various salinities (E. albidus only), and (b) after a hyperosmotic shock as a short-term time-course sequence. The rate of water loss following a hyperosmotic shock was measured for E. albidus. Long-term acclimation. E. albidus maintained a hyperosmotic coelomic fluid over all salinities tested. In low salinities the osmolality of the coelomic fluid of the marine population was significantly higher than that of the terrestrial population. Possible genetic discrepancies or long-term acclimation may account for this difference. The coelomic fluid of H. costata was hyperosmotic at 15%. S and isoosmotic at 30 S. Short-term acclimation (hyperosmotic shock). Both species investigated, kept at 15 S and then exposed to a salinity of 30, showed fast responses: within the first two hours the internal concentrations were adjusted to the new external condition with only small subsequent changes. Regulation of the body-water content after an exposure to a hyperosmotic shock was much slower: individuals of terrestrial E. albidus, acclimated for two weeks to either 0 or 15 S, had the same water content; hence, they showed a 100% regulation. However, after exposure to 30 S, a 100% regulation was still not attained 4 days after the hyperosmotic shock. Enchytraeus albidus is capable of actively reducing water loss following the hyperosmotic shock: the observed loss of water was only 40% of that expected for a passive osmotic flow. The observed reactions are compared with those in other annelids. It seems that an active transport of ions combined with a changeable permeability of the body wall play a major role in the regulation of body fluids.  相似文献   

19.
Salinity of Pyramid Lake increased from 3.7 to 5.5 between 1933 and 1980. Concern over future reductions in overall species richness prompted experiments to assess responses of dominant lake organisms to elevated salinity. Salinity tolerances of three important benthic invertebrates, Hyalella aztecta, Chironomus utahensis, and Heterocypris sp., were tested in controlled laboratory bioassays and also in a semi-natural environment consisting of large (47 m3) mesocosms.Densities of H. azteca in mesocosms were significantly lower at salinities of 8.0 and 11.0 compared with 5.6 controls in year one, but not in 8.5 salinity mesocosms in year two. The 96-h LC50 for H. azteca was high at 19.5. Short-term mortalities of C. utahensis were 100% at salinities of 13.3 and greater. Fifty-seven percent fewer larvae matured from third to fourth instar at 8.9 than at 5.5 salinity in 17 day subacute bioassays. Furthermore, larval chironomid densities and emergence of adults from mesocosms were significantly reduced at salinities of 8.0 and higher compared with controls. Mortality of Heterocypris sp. was 50% at a salinity of 18.6 in laboratory bioassays and populations in mesocosms ranged between 40 and 100% lower at salinities of 8.0 and 11.0 than in controls.Multiple generation mesocosm experiments indicated all three invertebrates were more sensitive to elevated salinity than results of short-term bioassays. Our studies suggest populations of these invertebrates may be reduced from present levels if Pyramid Lake's salinity were to double, although none are expected to be extirpated. Food habit shifts and reduced production of lake fishes are likely consequences of salinity-induced disruption in the benthic invertebrate forage base.  相似文献   

20.
To understand the unique success of the marine seaweedFucus vesiculosus L. (PHaeophyceae) in the brackish Baltic Sea, the performance of gametes from Baltic [4.1–6.5S (Salinity)] and marine populations was studied. Sperm from BalticF. vesiculosus swam with a path velocity of c. 30–110 m/s and could fertilize eggs in waters of salinities from 4 to 33S. In their natural water, Baltic sperm were not negatively phototactic, unlike marine sperm in seawater; this should decrease the sperm:egg concentration at the seafloor and reduce the likelihood of polyspermy. Marine (Iceland, Sweden) sperm in seawater had a path velocity of c. 80–100 m/s, but performed poorly and could not fertilize eggs in natural or artificial Baltic water 6S; therefore, Baltic populations have adapted or acclimated to their brackish habitat. Baltic populations appear better adapted to their natural low salinities because, even after culturing Baltic and marine individuals in water from both the Baltic (6.5S) and the marine Skagerrak (21S), Baltic sperm were in both cases still able to swim and fertilize eggs at lower salinities (4S) than marine sperm; fertilization never occurred between marine gametes at 4–6S. However,F. vesiculosus acclimates to some salinities, since sperm from Baltic and marine males that had been cultured at 21S swam better (higher velocity, proportion that were motile and/or linearity) in marine salinities (21–33S) than when they were cultured at 6.5S. The effects of salinity on sperm motility and fertilization were osmolar rather than due to specific ionic requirements, over the tested range. The osmolalities (< c. 100 mmol/kg) at which fertilization success of Baltic gametes decreases nearly to zero correspond to the osmolality of Baltic water at the northernmost limit of distribution ofF. vesiculosus in the Baltic Sea. Therefore, the present range ofF. vesiculosus in the Baltic appears to correspond to the osmotic tolerance of the gametes. Very small natural or anthropogenic increases in ambient osmolality would be likely to cause a substantial expansion of this species into the inner Baltic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号