首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pieces of fetal midbrain raphe tissue were transplanted into the third ventricle or the ventral hypothalamic region near the suprachiasmatic nucleus (SCN) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. The ability of grafted serotonin neurons to reinnervate the SCN in the host rats was studied by means of immunohistochemistry 1 and 3 months after transplantation. In both the intraventricular and intraparenchymal transplant experiments, reinnervation by outgrowing serotonin fibers was observed in the hypothalamus of host rats at 1 and 3 months after surgery. At both survival periods, there was no abundant arborization of serotonin fibers in the SCN, while the preoptic and periventricular areas of the host rats displayed a pattern of serotonergic innervation resembling that in normal (untreated) rats. It is suggested that within the SCN the regenerating serotonin fibers may be exposed to an inhibitory environment.  相似文献   

2.
Summary Avian pancreatic polypeptide (APP)-like, molluscan cardioexcitatory peptide (FMRF)-like and neuropeptide Y (NPY)-like immunoreactivities were studied in a secondary visual pathway in rat brain. The cell bodies of this pathway are located in the lateral geniculate nucleus and its terminal plexus is found in the suprachiasmatic hypothalamic nucleus (SCN). The neurons and terminal plexus demonstrated by antiserum to each peptide are identical, and immunoreactivity is blocked by preabsorption of each antiserum with a low concentration of the antigen against which it was raised. Immunoreactivity is also blocked by preabsorption of each antiserum with either NPY or APP. In contrast, APP- and NPY-like immunoreactivities are blocked only partially when these antisera are preabsorbed with concentrations of FMRF as high as 100 M. Since NPY is the only one of these peptides that has been isolated from mammalian brain, we conclude that NPY is the endogenous CNS peptide produced by neurons of the lateral geniculate-SCN projection.  相似文献   

3.
The effect of reserpine on neuropeptide Y immunoreactive (NPY-IR) neurons in the rat hypothalamic arcuate nucleus was examined by immunocytochemical techniques. Although only NPY-IR fibers and terminals were distributed in this nucleus in untreated and saline treated rats, single treatment of reserpine (10 mg/kg, i.p.) visualized abundant NPY-IR neuronal cell bodies: the increase began at 12 h of postinjection, reached its maximal level at 48 h, and returned to its normal level at 96 h. Pretreatment of nialamide, a monoamine oxidase inhibitor, prevented these acute reserpine-induced changes, suggesting reserpine acts on NPY neurons through monoaminergic mechanism. Chronic treatment of haloperidol (5 mg/kg, once daily for 5 days) a dopamine receptor antagonist, could induce the similar increase of NPY immunoreactivity. However, interruption of adrenergic and serotonergic neurotransmissions by chronic treatment of propranorol and methysergide, or chemical lesions of ascending noradrenergic and serotononergic pathways by 6-hydroxydopamine and 5,6-dihydroxytryptamine, could not induce any immunoreactive increase of NPY in arcuate neurons. These findings strongly suggest that reserpine-induced NPY increase occurs through dopaminergic afferents in hypothalamic arcuate neurons. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

4.
Although spontaneous neural firing in the mammalian suprachiasmatic nucleus is accepted to peak once during mid-subjective day, dual activity peaks have been reported in horizontal brain slices taken from hamsters. These two peaks were interpreted as new evidence for the theory of dual circadian oscillators and raised the expectation that such activity would be found in other circadian model systems. We examined hamster, mouse, and rat slices in both coronal and horizontal planes and found a second peak of activity only in hamster horizontal preparations. This raises interesting questions about the relative circadian physiology of these important experimental animals.Abbreviations CT circadian time - SCN suprachiasmatic nucleus P.W. Burgoon and P.T. Lindberg contributed equally to this work.  相似文献   

5.
Within the suprachiasmatic nucleus (SCN) of the rat the fine structure of the synapses and some features of their topological arrangement were studied. Five types of synapses could be distinguished with certainty: A. Two types of Gray-type-I (GTI) or asymmetrical synapses (approximately 33%). The presynaptic elements contain strikingly different types of mitochondria. Size of clear vesicles: approximately 450 A. Synapses with subjunctional bodies often occur, among these also "crest synapses". Localization: dendritic shafts and spines, rarely somata. B. Three types of Gray-type-2 (GTII) or symmetrical synapses (approximately 66%):1) Axo-dendritic and -somatic (=AD) synapses. Size of clear vesicles: approximately 500 A. 2) Invaginated axo-dendritic and -somatic (=IAD) synapses with club-like postsynaptic protrusions within the presynaptic elements (PreE1). Size of clear vesicles is very variable: approximately 400-1,000 A. 3) Dendro-dendritic, -somatic and somato-dendritic (=DD) synapses occurring at least partly in reciprocal arrangements. They represent an intrinsic system. Shape of clear vesicles: often oval; sucrose treatment partly produces flattening. Dense core-vesicles (dcv) are found in all GTII- and most of the GTI-synapses after three-dimensional reconstruction. All types of synapses (mostly GTII-synapses) can be enclosed by multilamellar astroglial formations. The synapses often occur in complex synaptic arrangements. Dendrites and somata of females show significantly more multivesiculated bodies than those of males. Further pecularities of presynaptic (PreELs) and postsynaptic elements (PostELs) within the SCN are described and discussed.  相似文献   

6.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

7.
Summary The classical areas for arginine-vasopressin (AVP) synthesis are the magnocellular supraoptic (SON) and paraventricular nuclei. More recently AVP was also demonstrated in neurons of the parvocellular suprachiasmatic nucleus (SCN) of the rat. This result was substantiated in the present study by means of immunoelectron microscopy, by subjecting sections to antivasopressin plasma. Conventional electron microscopy revealed dense-core vesicles in the SCN cell bodies and fibres (mean diameter 94.7±0.9 nm and 84.0±1.1 nm respectively). These vesicles were infrequent within the cell bodies and could not be accumulated by ethanol administration. Immunoelectron microscopy showed a positive reaction in the cell bodies and fibres within vesicles of 93.7±1.1 nm and 98.5±1.2 nm respectively. By comparison, the cell bodies and fibres of the SON showed immunoreactive granules of 143.0±1.8 and 147.3±1.8 nm respectively. The presence in the SCN of AVP in vesicles of different size than those in the SON suggests that synthesis of this substance is indeed occurring within the SCN cells.Supported by The Foundation for Medical Research FUNGOThe authors wish to thank Dr. L.A. Sternberger (Edgewood Arsenal, Md., U.S.A.) for the peroxidase-anti-peroxidase complex, Dr. J.G. Streefkerk (Free University, Amsterdam) and the members of our project group Neuroendocrinology for their suggestions, Mr. P.S. Wolters and Miss A. van der Veiden for their skilled assistance  相似文献   

8.
Summary The distribution of (125I) alpha bungarotoxin (-BTX) binding sites in the suprachiasmatic nucleus (SCN) of the adult female rat was examined by electron-microscopic autoradiography. The ultrastructural distribution of silver grains was analysed by line source, direct point count, and 50% probability circle methods. Real grain distribution was significantly different from that of randomly generated hypothetical grains. Line source analysis demonstrated two populations of sources: one associated with membranes, and one inside neuronal structures. Probability circle analysis of shared grains indicated that membrane-bound-radioactive sources were mainly asssociated with axo-dendritic appositions. Only a small proportion of labeled neuronal interfaces exhibited synaptic differentiations in the plane of section. However, the compartment containing synaptic terminals was the most enriched when comparing real to hypothetical grains. Probability circle analysis of exclusive grains demonstrated that sources that were not associated with neuronal plasma membranes were likely to be within nerve cell bodies and dendrites. It is concluded that the majority of specifically labeled -BTX binding sites in the SCN is membrane bound, and may be associated with axodendritic synaptic transmission. The presence of a significant proportion of the label in the soma and dendrites of suprachiasmatic neurons 24 h after ventricular infusion suggests that some of the labeled binding sites (junctional or nonjunctional) may be internalized within these two compartments.  相似文献   

9.
Circadian changes of protein tyrosine phosphorylation in the hypothalamic suprachiasmatic nucleus have been studied using rats maintained under 12-h light/ 12-h dark cycles as well as constant dark conditions. We found that tyrosine phosphorylation of BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs), a transmembrane glycoprotein of 90-95 kDa, was higher in the light period than in the dark period and was increased after light exposure in the dark period. Similar changes in tyrosine phosphorylation were observed under constant dark conditions, but its amplitude was weaker than that in 12-h light/12-h dark cycles. As the tyrosine-phosphorylated form of BIT is able to bind to the Src homology 2 domain of a protein tyrosine phosphatase, SHP-2, we examined association of these proteins in suprachiasmatic nucleus extracts and found that SHP-2 was coprecipitated with BIT in parallel with its tyrosine phosphorylation. These results suggest that tyrosine phosphorylation of BIT might be involved in light-induced entrainment of the circadian clock.  相似文献   

10.
Two separate and distinct retinal projections to the hypothalamus in the iguanid lizard Dipsosaurus dorsalis were described using horseradish peroxidase and cobalt-filling techniques. Both of the projections were unilateral and completely crossed; one terminated in the supraoptic nucleus and the other in the suprachiasmatic nucleus. Immunocytochemical analysis showed that the supraoptic nucleus contained cell bodies and fibers that cross-react with antibodies raised against arginine vasopressin, while the suprachiasmatic nucleus contained arginine vasopressin-like immunoreactive fibers emanating from cells in the nearby paraventricular nucleus. The suprachasmatic nucleus contained a dense plexus of fibers that cross-reacted with neuropeptide-Y antibody. Antiserum against vasoactive intestinal polypeptide showed no reactivity in any part of the forebrain, while antiserum against serotonin showed sparse and uniform reactivity throughout the forebrain, including the suprachiasmatic nucleus. These results, together with other data, indicate that the suprachiasmatic nucleus of D. dorsalis is homologous to the suprachiasmatic nuclei of rodents, structures known to contain circadian pacemakers. We suggest that the suprachiasmatic nucleus may play a similar role in the circadian system of D. dorsalis.  相似文献   

11.
Summary The identification of optic synapses in the rat suprachiasmatic nucleus (Güldner, 1978) has made it possible to study them morphometrically. The measurements followed the check-list introduced by Palay and Chan-Palay (1976). There are several items which could usefully be added to this list. The structure of essential synaptic components varies considerably in what is apparently one synaptic population based on morphological criteria. The possible reasons for the variable sizes of the optic boutons containing different amounts of clear and dense core vesicles are discussed in terms of different activities or metabolic states of the individual boutons and/or different metabolic states of neuronal and glial elements in their vicinity. The active zones of optic synapses are also extremely variable. One optic bouton can form several active zones of very different sizes, or form Gray-type-I (asymmetric), Gray-type-II (symmetric) and intermediate contacts at the same time. The function and/or functional efficiency of a single optic bouton therefore could then be quite different with respect to its various postsynaptic elements. The different appearance of the active zones is discussed mainly in terms of possible regulative influences from neighboring synapses via the postsynaptic neuron.The author wishes to thank Mrs. Bassirat Pirouzmandi for her excellent technical assistance  相似文献   

12.
Summary Two different monoclonal antibodies raised against choline acetyltransferase were used, together with preembedding immunocytochemical techniques, to visualize the possible cholinergic innervation of the supraoptic and paraventricular nuclei of the rat hypothalamus. Light microscopy confirmed the presence of a group of bipolar and multipolar immunoreactive neurones in the hypothalamus dorsolateral to the supraoptic nucleus as well as numerous immunopositive fibers. Electron microscopy showed that the immunopositive cell bodies contained the usual perikaryal organelles while most immunoreactive fibers appeared dendritic; immunonegative terminals made synaptic contact onto these profiles. Immunopositive terminals making synaptic contact onto dendritic profiles were also noted in this area. In contrast, light microscopy showed no immunoreactivity to choline acetyltransferase in the magnocellular nuclei themselves. Electron microscopy revealed some immunopositive profiles along the boundaries of both nuclei, along the optic chiasm adjacent to the supraoptic nucleus and in the ventral glial lamina but not within the nuclei proper. Surprisingly, these immunopositive profiles appeared dendritic and were often contacted by one or more immunonegative synapses. Our observations thus indicate that cell bodies and dendrites in the supraoptic and paraventricular nuclei are not directly innervated by cholinergic synapses. The functional significance of the putative cholinergic dendrites in close proximity to magnocellular neurones remains to be determined.  相似文献   

13.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the pacemaker that controls circadian rhythms of a variety of physiological functions. Data strongly indicate the majority of the SCN neurons express self-sustaining oscillations that can be detected as rhythms in the spontaneous firing of individual neurons. The period of single SCN neurons in a dissociated cell culture is dispersed in a wide range (from 20h to 28h in rats), but that of the locomotor rhythm is close to 24h, suggesting individual oscillators are coupled to generate an averaged circadian period in the nucleus. Electrical coupling via gap junctions, glial regulation, calcium spikes, ephaptic interactions, extracellular ion flux, and diffusible substances have been discussed as possible mechanisms that mediate the interneuronal rhythm synchrony. Recently, GABA (γ-aminobutyric acid), a major neurotransmitter in the SCN, was reported to regulate cellular communication and to synchronize rhythms through GABAA receptors. At present, subsequent intracellular processes that are able to reset the genetic loop of oscillations are unknown. There may be diverse mechanisms for integrating the multiple circadian oscillators in the SCN. This article reviews the knowledge about the various circadian oscillations intrinsic to the SCN, with particular focus on the intercellular signaling of coupled oscillators. (Chronobiology International, 18(3), 371-387, 2001)  相似文献   

14.
In the Royal College of Surgeons (RCS) rat, characterized by inherited retinal dystrophy, retinal projections to the brain were studied using anterograde neuronal transport of cholera toxin B subunit upon injection into one eye. The respective immunoreactivity was found predominantly contralateral to the injection site in the lateral geniculate nucleus, superior colliculus, nucleus of the optic tract, medial terminal nucleus of the accessory optic tract, and bilateral hypothalamic suprachiasmatic nuclei. Although terminal density was somewhat reduced in dystrophic rats, the projection patterns in these animals appeared similar to those seen in their congenic controls and were comparable to the visual pathways described for the rat previously. In dystrophic rats, the number of cell bodies exhibiting immunoreactivity to vasoactive intestinal polypeptide, viz. a population of suprachiasmatic neurons receiving major retinohypothalamic input, was reduced by one-third, and some differences were observed in the termination pattern of the geniculohypothalamic tract, as revealed by immunoreactivity to neuropeptide Y in the suprachiasmatic nucleus.This study was supported by grants from the DFG (Re 644/2-1) and the NMFZ, Mainz (to S.R.).  相似文献   

15.
Catecholaminergic fibers in the suprachiasmatic nucleus of adult rats were investigated by use of light- and electron-microscopic immunocytochemistry. The suprachiasmatic nucleus receives a modest density of tyrosine hydroxylase-containing axons, homogeneously distributed in the nucleus and forming varicosities throughout its entire rostro-caudal extension. Immunolabeling with antibodies against dopamine showed that this catecholamine input comprises a dopaminergic component. Many tyrosine hydroxylase-positive cells were localized at the immediate periphery of the suprachiasmatic nucleus. With electron-microscopic examination, dendrites of these neurons were found within the limits of the nucleus as well as at a border zone between the suprachiasmatic nucleus proper and the optic tract where they received unlabeled synapses, providing a morphological support for a possible role of dopaminergic neurons in the integration and/or transfer of light-related signals. More than 91% of catecholaminergic axonal varicosities were found to establish morphologically defined synapses with dendrites. To investigate whether these synapses might be shared with neurons of one or both of the two main peptidergic populations of the nucleus, namely vasoactive intestinal peptide- and vasopressin-containing neurons, we carried out doublelabeling experments combining immunoperoxidase and immunogold-silver labeling. Results showed only a few cases of direct association of the catecholaminergic terminals with these peptidergic categories. In both types of dually stained sections, catecholaminergic synapses were preferentially made with unlabeled dendrites. The homogeneous distribution of tyrosine hydroxylase-immunoreactive fibers in the suprachiasmatic nucleus could therefore reflect a lack of significant catecholaminergic innervation of both vasoactive intestinal peptide- and vasopressin-synthesizing neurons.  相似文献   

16.
Triple fluorescence labelling was employed to reveal the distribution of chemically identified neurons within the pontine laterodorsal tegmental nucleus and dorsal raphe nucleus which supply branching collateral input to the central nucleus of the amygdala and hypothalamic paraventricular nucleus. The chemical identity of neurons in the laterodorsal tegmental nucleus was revealed by immunocytochemical detection of choline-acetyltransferase or substance P; in the dorsal raphe nucleus, the chemical content of the neurons was revealed with antibody recognizing serotonin. The projections were defined by injections of two retrograde tracers, rhodamine-and fluorescein-labelled latex microspheres, in the central nucleus of the amygdala and paraventricular nucleus, respectively. Neurons projecting to both the central nucleus of the amygdala and the paraventricular nucleus were distributed primarily within the caudal extensions of the laterodorsal tegmental nucleus and dorsal raphe nucleus. Approximately 11% and 7% of the labelled cells in the laterodorsal tegmental nucleus and dorsal raphe nucleus projected via branching collaterals to the paraventricular nucleus and central nucleus of the amygdala. About half of these neurons in the laterodorsal tegmental nucleus were cholinergic, and one-third were substance-P-ergic; in the dorsal raphe nucleus, approximately half of the neurons containing both retrograde tracers were serotonergic. These results indicate that pontine neurons may simultaneously transmit signals to the central nucleus of the amygdala and paraventricular nucleus and that several different neuroactive substances are found in the neurons participating in these pathways. This coordinated signalling may lead to synchronized responses of the central nucleus of the amygdala and paraventricular nucleus for the maintenance of homeostasis. Interactions between different neuroactive substances at the target site may serve to modulate the responses of individual neurons.  相似文献   

17.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

18.
Summary In the suprachiasmatic nucleus of the rat light microscopic immunostaining for vasopressin reveals a distribution pattern of the immunoreactive material different from that known for the supraoptic nucleus. Among non-stained neurons positive-reacting perikarya display a cap- or tiplike labeling. The area of the suprachiasmatic nucleus is marked by delicate vasopressin-positive fibers. At the ultrastructural level the reaction product, after incubation with anti-vasopressin, is localized in small elementary granules unevenly distributed over the cytoplasm. Groups of axons containing specifically labeled granules contact non-reacting fibers.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr. 569/2) and Stiftung Volkswagenwerk  相似文献   

19.
Summary The neuropil located ventral to the SON was investigated by the use of immunoperoxidase staining for neurophysins, oxytocin and vasopressin, and electron miroscopy. The study was performed in six groups of rats: 1) control; 2) infusion of isotonic saline into the CSF; 3) infusion of hypertonic saline into the CSF; 4) drinking hypertonic saline for 4 days; 5) same as group 4 but injection of colchicine into the CSF on second day of dehydration; 6) salt loading for 3 months. In the control rats the ventral neuropil contained a few immunoreactive processes, the general morphology of which was completely different from that of the neurosecretory axons emerging from the SON at its dorsal aspect. In rats of groups 3 to 6 the ventral processes (VP) became loaded with neurosecretory granules, whereas the perikarya and axons were depleted. Based on their general morphology and reactivity pattern it is suggested that the VP are dendrites. Most of these dendrites were embedded in a glial cushion formed by the processes of a particular type of marginal glia. Some of these dendrites enveloped an arteriole penetrating the optic tract. All VP were rich in synaptic contacts. The possibility that the VP of neurosecretory cells may be functionally related to the subarachnoid CSF and the arteriolar blood flow is discussed.Supported by Grant RS-82-18 from Direccíon de Investigaciones, Universidad Austral de Chile  相似文献   

20.
Summary Messenger RNAs (mRNA) coding for vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), somatostatin and vasopressin were localized in the suprachiasmatic nucleus (SCN) of the rat hypothalamus using in situ hybridization histochemistry. Specific mRNA coding for each of these peptides was distributed in areas coextensive with the immunohistochemical localization of the appropriate peptide. The autoradiographic signal produced with probes to VIP and PHI created dense concentrations of silver grains over neuronal perikarya in the ventrolateral SCN, and the coextensive distribution of both VIP-and PHI-mRNAs suggests that both peptides are synthesized within the same neurons. The distribution of somatostatin-mRNA was distinct from that of VIP and PHI. Labeled neurons are observed at the interface of the two SCN subdivisions and the distribution of these neurons is identical to those shown to contain somatostatin immunoreactivity. Vasopressin-mRNA is also differentially concentrated within neurons in the dorsomedial subdivision of the SCN in an area that is coextensive with vasopressin-immunoreactive perikarya. The discrete pattern of hybridization for each of these mRNAs indicates that each of these peptides are synthesized in SCN neurons and reaffirms the differential distribution of each of these chemically defined cell populations within cytoarchitecturally distinct subdivisions of the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号