首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR.  相似文献   

2.
LexA2 repressor was partially inactivated after mitomycin C or UV light treatment in a recA+ or recA85(Prtc) (protease constitutive) host background. LexA2 protein was cleaved, but the reaction was slower than that observed for LexA+ repressor. lexA2 had a C-to-T transition at nucleotide 461 (Thr-154 to Ile).  相似文献   

3.
4.
Iron transport in Escherichia coli K-12   总被引:14,自引:0,他引:14  
The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.List of Abbreviations DHB 2,3-dihydroxybenzoate - DBS 2,3-dihydroxybenzoylserine - NTA nitrilotriacetate - DNP 2,4-dinitrophenol  相似文献   

5.
D-serine transport system in Escherichia coli K-12   总被引:1,自引:7,他引:1       下载免费PDF全文
The d-serine transport system in Escherichia coli K-12 was studied by use of a mutant unable to form d-serine deaminase, yet resistant to d-serine. The mutant is greatly impaired in its ability to accumulate d-serine, d-alanine, and glycine. Transport of l-alanine is partially affected but transport of l-serine is unaffected. The mutant is also resistant to d-cycloserine, indicating that d-serine is transported by the system responsible for uptake of d-cycloserine. The d-serine transport system is not inducible, but appears to be formed constitutively, as are the transport systems of most amino acids. The transport mutation appears to be multistep and maps to the right of malB on the E. coli linkage map.  相似文献   

6.
The gene encoding the proton-glutamate carrier (GltP) of Escherichia coli K-12 was sequenced, and the primary structure of the protein was analyzed. The nucleotide sequence was found to differ in several aspects from the previously published sequence (B. Wallace, Y. Yang, J. Hong, and D. Lum, J. Bacteriol. 172:3214-3220, 1990). The corrected open reading frame encodes a protein of 437 (instead of 395) amino acids. Hydropathy analysis predicts 12 membrane-spanning alpha-helical regions. The complementary strand does contain an open reading frame possibly encoding a highly hydrophilic polypeptide of 272 amino acids.  相似文献   

7.
Abstract Cadmium ions are bacteriocidal, resulting in exponential killing that starts immediately after exposure. We have shown that pretreatment with sublethal concentrations of cadmium induces tolerance. Protection against cadmium killing can also be obtained by preincubation at elevated temperatures, known to induce the heat-shock response. However, in contrast to pretreatment at elevated temperatures, exposure to sublethal cadmium concentrations does not induce thermotolerance.  相似文献   

8.
The excC mutants of Escherichia coli are hypersensitive to drugs such as cholic acid and release periplasmic proteins Into the extracellular medium. A 1884 bp fragment carrying the excC gene was isolated and sequenced. It contains the 3′ end of the tolB gene which maps at min 17 on the E. coll map and an open reading frame which encodes the 18748 Da ExcC protein. The protein is composed of a hydrophobic region of 22 residues and displayed an overall hydrophilic configuration. It was shown that the ExcC protein is indeed the PAL (peptidoglycan-associated lipoprotein) described by Mizuno (1979). The pal gene had not yet been characterized on the E. coli linkage map since no obvious phenotype could be identified for mutations in this gene. A topologic analysis of the PAL protein using PAL–PhoA translational fusions showed that PAL is associated with the outer membrane only by its N-terminal moiety. The carboxy-terminal part of the protein is necessary for correct interaction of PAL with the peptidoglycan layer.  相似文献   

9.
L-arabinose transport systems in Escherichia coli K-12.   总被引:10,自引:8,他引:2       下载免费PDF全文
Mutations in the arabinose transport operons of Escherichia coli K-12 were isolated with the Mu lac phage by screening for cells in which beta-galactosidase is induced in the presence of L-arabinose. Standard genetic techniques were then used to isolate numerous mutations in either of the two transport systems. Complementation tests revealed only one gene, araE, in the low-affinity arabinose uptake system. P1 transduction placed araE between lysA (60.9 min) and thyA (60.5 min) and closer to lysA. The operon of the high-affinity transport system was found to contain two genes: araF, which codes for the arabinose-binding protein, and a new gene, araG. The newly identified gene, araG, was shown by two-dimensional gel electrophoresis to encode a protein which is located in the membrane. Only defects in araG could abolish uptake by the high-affinity system under the conditions we used.  相似文献   

10.
Amino acid transport systems in Escherichia coli K-12   总被引:30,自引:0,他引:30  
  相似文献   

11.
Citrate-dependent iron transport system in Escherichia coli K-12   总被引:20,自引:0,他引:20  
Induction of the citrate-dependent iron transport system of Escherichia coli K-12 required 0.1 mM citrate and 0.1 micrometer iron in the growth medium. Five--ten-times more iron than citrate was taken up into the cells which suggests that citrate was largely excluded from the transport. Fluorocitrate and phosphocitrate induced the citrate-dependent iron transport system although they supported iron uptake only very poorly. An outer membrane protein (FecA), belonging to the transport system, was induced in fecB mutants which were devoid of citrate-dependent iron transport. The intracellular citrate and iron concentrations were 10--100-times higher than the external concentrations required for induction of the transport system. It is concluded that only exogenous ferric citrate induced the transport system, and that citrate did not have to enter the cytoplasm. The Tn10 transposon, conferring tetracycline resistance, was inserted near the fec gene region which controls the expression of the citrate-dependent iron transport system. The determination of the cotransduction frequencies of Tn10 with the fecA and fecB markers suggested the gene order fecA fecB Tn10.  相似文献   

12.
We have isolated mutants of Escherichia coli that have an altered beta-galactoside transport system. This altered transport system is able to transport a sugar, maltose, that the wild-type beta-galactoside transport system is unable to transport. The mutation that alters the specificity of the transport system is in the lacY gene, and we refer to the allele as lacYmal. The lacYmal allele was detected originally in strains in which the lac genes were fused to the malF gene. Thus, as a result of gene fusion and isolation of the lacYmal mutation, a new transport system was evolved with regulatory properties and specificity similar to those of the original maltose transport system. Maltose transport via the lacYmal gene product is independent of all of the normal maltose transport system components. The altered transport system shows a higher affinity than the wild-type transport system for two normal substrates of the beta-galactoside transport system, thiomethyl-beta-D-galactoside and o-nitrophenyl-beta-D-galactoside.  相似文献   

13.
14.
We found a significant activity of hydroxypyruvate isomerase in Escherichia coli clone cells harboring an E. coli gene (called orf b0508 or gip), which is located downstream of the glyoxylate carboligase gene. We newly designated the gene hyi. The enzyme was purified from cell extracts of the E. coli clone. The enzyme had a molecular mass of 58 kDa and was composed of two identical subunits. The optimum pH for the isomerization of hydroxypyruvate was 6.8-7.2. The enzyme required no cofactor. It exclusively catalyzed the isomerization between hydroxypyruvate and tartronate semialdehyde. The apparent K(m) value for hydroxypyruvate was 12.5 mM. The amino acid sequence of E. coli hydroxypyruvate isomerase is highly similar to those of glyoxylate-induced proteins, Gip, found widely from prokaryotes to eukaryotes.  相似文献   

15.
The fdnGHI operon of Escherichia coli encodes nitrate-inducible formate dehydrogenase. We report here the entire nucleotide sequence of fdnGHI. The sequence contains three open reading frames of sizes appropriate to encode the three subunits of formate dehydrogenase-N. fdnG contains an in-frame UGA codon that specifies selenocysteine incorporation, and the predicted amino acid sequence of FdnG shows similarity to two other bacterial formate dehydrogenase enzymes. FdnH contains 4 cysteine clusters typical of those found in iron-sulfur proteins. FdnG also contains a cysteine cluster. Evidence from sequence and spectral analyses suggest that FdnI encodes cytochrome bFdn556. Implications for the membrane topology of formate dehydrogenase-N and its mechanism of proton translocation are discussed.  相似文献   

16.
omp T: Escherichia coli K-12 structural gene for protein a (3b)   总被引:12,自引:11,他引:1       下载免费PDF全文
Chromosomal DNA from strain UT400, a previously described deletion mutant of Escherichia coli K-12 that lacks outer membrane protein a, failed to hybridize with plasmid DNA (pGGC110) containing the structural gene for protein a. We designate the genetic locus for protein a, located at approximately 12.5 min of the E. coli chromosome, ompT.  相似文献   

17.
A strain of Escherichia coli K-12 has been isolated that carries a Mu bacteriophage-induced mutation in the ent gene cluster. Nutritional tests together with examination of the compounds accumulated by the mutant strain indicated that the mutant was blocked both in the synthesis of 2,3-dihydroxy-benzoate and its subsequent conversion into enterochelin. Enzymic complementation assays of the mutant with several mutants each affected in one of the ent genes showed that the Mu-induced mutant was entA-, entB-, entC+, entD+, entE+, and entF+. Since the mutant produced the entD, entE, and entF gene products but was unable to produce enterochelin from 2,3-dihydroxybenzoate, it must therefore be affected in an additional protein concerned with this conversion. It is therefore postulated that the Mu-induced mutation affects a previously unrecognized gene, entG. Genetic experiments indicate that the mutation in strain AN462 which affects the three ent genes is the result of a single insertion of Mu in the ent gene cluster. This polarity mutant therefore provides evidence that three of the ent genes are part of an operon.  相似文献   

18.
19.
20.
Multiplicity of leucine transport systems in Escherichia coli K-12   总被引:34,自引:26,他引:8       下载免费PDF全文
The major component of leucine uptake in Escherichia coli K-12 is a common system for l-leucine, l-isoleucine, and l-valine (LIV-I) with a Michaelis constant (K(m)) value of 0.2 muM (LIV-I system). The LIV-binding protein appears to be associated with this system. It now appears that the LIV-I transport system and LIV-binding protein also serve for the entry of l-alanine, l-threonine, and possibly l-serine. A minor component of l-leucine entry occurs by a leucine-specific system (L-system) for which a specific leucine-binding protein has been isolated. A mutant has been obtained that shows increased levels of the LIV-I transport activity and increased levels of both of the binding proteins. Another mutant has been isolated that shows only a major increase in the levels of the leucine-specific transport system and the leucine-specific binding protein. A third binding protein that binds all three branched-chain amino acids but binds isoleucine preferentially has been identified. The relationship of the binding proteins to each other and to transport activity is discussed. A second general transport system (LIV-II system) with a K(m) value of 2 muM and a relatively low V(max) can be observed in E. coli. The LIV-II system is not sensitive to osmotic shock treatment nor to growth of cells in the presence of leucine. This high K(m) system, which is specific for the branched-chain amino acids, can be observed in membrane vesicle preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号