首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17 beta + vehicle and 3) Estradiol-17 beta + PGE2 (500 micrograms) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17 beta given on days 9 and 10 from causing a precocious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17 beta. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17 beta-induced premature luteolysis.  相似文献   

2.
The effects of a single or double regimen of exogenous progesterone and estradiol-17beta (P/E, total dose 300 mg P/20 mg E) were investigated in 50 postparturient Quarter Horse mares. In Trial 1, at 1 and 24 h after foaling, mares were injected with progesterone (150 mg) and estradiol-17beta (10 mg) (n = 7) or 0.9% NaCl (control, n = 13). In Trial 2, within 12 h after foaling, mares were injected with progesterone (300 mg) and estradiol-17beta (20 mg) (n = 13) or 0.9% NaCl (control, n = 17). Mares were examined daily by palpation per rectum and transrectal ultrasonography to determine the day of ovulation. The largest cross sectional diameters of each uterine horn and uterine body were measured ultrasonographically on Day 15 postpartum. Mean uterine diameters did not differ between treatment groups (P > 0.05) in Trial 1, Trial 2 or for combined data for both Trials 1 and 2. For mares bred on the first postpartum estrus pregnancy rates did not differ (P > 0.05) between treatment groups (16/18, 89%) and controls (22/30, 81%) nor was there a difference in mean day to first postpartum ovulation (P > 0.05) between treated and control groups in Trial 1, Trial 2 or Trials 1 and 2 combined. However, fewer (P < 0.05) total P/E treated mares (0/20) ovulated prior to Day 10 postpartum than did control mares (6/30). Variance in days to ovulation was lower (P < 0.05) for P/E treated mares (var = 3.73 days) than for control mares (var = 7.64 days) for data combined from Trials 1 and 2.  相似文献   

3.
Traditionally, mares are put under artificial lights to advance the first ovulation of the year. The aim of the present study was to determine the efficacy of recombinant equine FSH (reFSH) in stimulating follicular development and advancing the first ovulation of the year in seasonally anestrous mares compared with anestrous mares given a placebo. Both groups of mares were housed under ambient light conditions. Sixty deep anestrous mares of light horse breeds (follicular diameters ≤20 mm in diameter and progesterone <1 ng/mL) were maintained under a natural photoperiod at three different sites: University of California, Davis, Colorado State University, and University of Kentucky Gluck Centre. Twenty mares at each site were randomly allocated to receive either 0.65 mg of reFSH (group A: treatment; n = 10) or a placebo (group B: control; n = 10) twice daily by im beginning on January 31. Treatment continued until one or more preovulatory follicles developed or up to a maximum of 15 days. Randomized treatments were blinded. Follicular development was closely monitored by transrectal ultrasonography. When the largest follicle reached ≥35 mm in diameter, reFSH treatment was discontinued and an injection of 2500 international units of hCG was administered iv 36 hours later to induce ovulation. Jugular blood samples were collected daily from all mares at University of California, Davis, and processed for LH, FSH, progesterone, estradiol-17β, and immunoreactive-inhibin by RIA. All 30 mares receiving reFSH (group A) developed follicles ≥35 mm within 7.4 ± 1.6 days of treatment. Twenty-three of the 30 reFSH-treated mares (group A) ovulated within 72 hours after hCG administration. In contrast, mares in group B (placebo, control) did not exhibit significant follicular development and none ovulated within the 15-day observation period. Mares in group A had significantly higher plasma levels of FSH, estradiol-17β, and immunoreactive-inhibin during treatment but did not exhibit a preovulatory LH surge. Mares administered reFSH returned to anestrus and spontaneously ovulated at a similar calendar date as control mares. These data indicate that reFSH was effective in stimulating the development of ovarian follicles and advancing the first ovulation of the year in seasonally anestrous mares under ambient lights but was not successful in inducing continued cyclicity.  相似文献   

4.
Four pony mares were used in a cross-over study to investigate the effect of different treatments on experimentally-induced endometritis. The mares were treated with progesterone to facilitate establishment of uterine infections. They received an intrauterine infusion of Streptococcus zooepidemicus 5 days after the start of progesterone therapy. Five days later, they were treated by intrauterine infusions of 2 g ampicillin in 50 ml sterile water or by sterile water without antibiotic for 3 consecutive days. Prior to infusion of Strep. zooepidemicus , no bacteria were cultured from the uteri of the mares. However, 5 days after infusion of Strep. zooepidemicus and prior to antibiotic therapy, mixed bacterial growths were cultured from endometrial swabbings. After antibiotic therapy, ampicillin-resistant organisms were cultured from endometrial swabbings. Two other progesterone-treated mares received an intrauterine infusion of sterile phosphate buffered saline instead of bacteria. Mixed bacterial cultures were recovered 5 days later from the endometrial swabbings of these mares. It was concluded that the high circulating concentrations of progesterone were probably responsible for the treatment failure and that in clinical situations, therapy involving transcervical manipulations should not be administered when mares are in diestrus.  相似文献   

5.
An experiment was conducted to assess the effects of estrogen or parturition on absorption of endotoxin from the ovine uterus. Twelve cycling ewes were assigned to one of four treatment groups (three ewes/group): Group I, no estrogen (NE) + intrauterine infusion of sterile saline (IUS); Group II, NE + intrauterine infusion of 100 mg endotoxin - Lipopolysaccharide W./E.coli 0127:B8, Difco Laboratories, Detroit, MI (IUE); Group III, 3 days pretreatment with estradiol-17β (50 μg/da, E) + IUS; and Group IV, E + IUE. In addition, the uteri of three early postpartum ewes were infused with 100 mg endotoxin (Group V). Rectal temperatures (RT) and jugular blood samples were obtained at ?40, ?20, 0 (infusion), 20, 40, 60, 80, 100, 120, 180, and 240 minutes. The blood samples were analyzed for total white blood cell counts (WBC) and Limulus Amebocyte Lysate Assays (LAL). There were no alterations in RT, WBC, or LAL observed in Groups I–V. These results indicated that neither prior treatment with estradiol in cycling ewes nor parturition affected absorption of E.coli endotoxin from the ovine uterus.A second study was conducted to characterize the changes in RT, WBC, and LAL during endotoxemia in cycling ewes. Three ewes received intraperitoneal infusions of 100 mg endotoxin and three ewes received intraperitoneal infusions of sterile saline. Evidence that endotoxin was absorbed from the peritoneal cavity was a decrease (P<0.10) in WBC and positive LAL in endotoxin-infused ewes. WBC and LAL did not change in saline-infused ewes. No changes in RT were observed in either group.  相似文献   

6.
Two experiments were conducted to assess the effect of exogenous hormone treatment on uterine luminal prostaglandin F (PGF). In the first experiment ovariectomized pony mares received either corn oil (21 days, n = 3), estradiol valerate (21 days, n = 3), progesterone (21 days, n = 3) or estradiol valerate (7 days) followed by progesterone (14 days, n = 4). Progesterone treated mares had higher (P<.01) uterine luminal PGF compared with all other groups, and no differences were detected between other treatment comparisons. In Experiment II, uterine fluid was collected from 4 ovariectomized horse mares before and after treatment with estradiol valerate (7 days) followed by progesterone (50 days). Pretreatment uterine luminal PGF levels were lower (P<.001) than post-treatment levels (.03 vs 76.80 ng/ml). In a third experiment PGF was measured in uterine fluid of pony mares on days 8, 12, 14, 16, 18 and 20 of the estrous cycle and pregnancy. In nonpregnant mares a day effect P<.03) was observed in which uterine fluid PGF increased during the late luteal phase and declined thereafter. In contrast, no day effect was observed in pregnant animals and uterine luminal PGF was lower (P<.001) than in cycling animals. These studies indicate that exogenous progesterone administration results in a large increase in uterine luminal PGF, whereas, pregnancy results in suppression. Taken collectively with previous work from our laboratory, these results suggest that while the endometrium of pregnant mares is capable of producing large amounts of PGF, the presence of a conceptus impedes its synthesis and/or release which allows for luteal maintenance.  相似文献   

7.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of this study was to evaluate the effect of active immunization against GnRH on ovarian activity, plasma progesterone and estradiol concentrations and on estrous behavior in adult mares. Eighteen cyclic mares were randomly divided into a treatment and control group. Nine mares were immunized twice with 2 mL (400 microg GnRH-protein conjugate) of a GnRH-vaccine (Improvac, CSL Limited, Australia) administered intramuscularly, 4 weeks apart. Control mares received the same amount of saline solution. Ovaries and uterus of all mares were examined weekly by ultrasonography from 3 weeks before to 60 weeks after first immunization. Thereafter, vaccinated mares were evaluated monthly until 100 weeks after first vaccination. In addition, mares were teased with a stallion for assessment of estrous behavior and blood was collected for progesterone, estradiol-17beta and GnRH antibody titer determination. Results demonstrate that vaccination against GnRH significantly (P<0.05) influenced all parameters, except estradiol-17beta concentration. All vaccinated mares ceased reproductive cyclicity (plasma progesterone <1 ng/mL, follicles <3 cm) within 8 weeks after the first injection and ovarian activity remained suppressed for a minimum of 23 weeks. Five mares resumed cyclicity (follicles >3 cm, progesterone >1 ng/mL) while three mares showed only follicular activity (follicles >3 cm) and one mare remained completely suppressed for the entire duration of the study. In spite of ovarian suppression, four mares expressed sporadic and one mare continuous estrous behavior. In conclusion, reproductive cyclicity in adult mares can be successfully suppressed by immunization against GnRH but the timing of resumption of cyclicity is highly variable and estrous behavior may occur in spite of ovarian suppression.  相似文献   

9.
Oxytocin is released in response to teasing during both estrus and diestrus in mares, and at least during estrus, teasing results in an increase in electromyographic activity in the uterus. Exogenous oxytocin causes an increase in intrauterine pressure and prior studies have shown that this response is correlated to the day of the estrous cycle. To determine if teasing causes an increase in intrauterine pressure and if this response varies by day of the cycle, intrauterine pressure was measured while mares were teased with a stallion 2 days before ovulation, on the day ovulation was detected and 2 days after ovulation. A significant increase in intrauterine pressure was observed in response to teasing both 2 days before ovulation and on the day of ovulation, when plasma concentrations of progesterone were low. No significant increase in intrauterine pressure was observed in response to teasing 2 days after ovulation when progesterone concentrations were elevated. Management practices that include teasing or stallion exposure may be beneficial in stimulating uterine clearance mechanisms in mares during the preovulatory period.  相似文献   

10.
Luteal progesterone was removed by an injection of prostaglandin F(2alpha) or bilateral ovariectomy on Day 12 of pregnancy in pony mares. The embryonic vesicle remained mobile in the uterus until loss occurred on Days 13, 13, 15, or 19 in four prostaglandin-treated mares and Days 15, 17, 19, or 26 in four ovariectomized mares. Exogenous progesterone given daily, starting on Day 12, maintained pregnancy until Day 40 in five of five prostaglandin-treated and three of four ovariectomized mares. During two-hour mobility trials on Day 14, embryonic vesicles in mares without luteal or exogenous progesterone (n = 9) moved to a different uterine segment less frequently (mean number of location changes per two-hour trial: 7.2 +/-1.0 vs 10.4 +/-1.1, P < 0.05) and were observed more often in the uterine body (14.9 +/-2.9 vs 8.9 +/-1.3, P < 0.10) compared to vesicles in mares with a progesterone influence (n = 15). Of mares that still had a vesicle present on Day 18, fixation occurred by Day 17 in all (12 12 ) mares under the influence of luteal or exogenous progesterone but failed to occur in the three mares that were not under progesterone influence. Progesterone replacement was started on Day 16 in three mares that received prostaglandin F(2alpha) on Day 12 and still had a vesicle on Day 16. The vesicle was maintained and continued to develop in all three mares, indicating that the vesicles were viable four days after PGF(2alpha) treatment. However, fixation tended to be delayed (P < 0.15) and orientation of the embryo proper was altered (P < 0.005) compared to mares that were continuously under the influence of progesterone. The results demonstrated the importance of luteal progesterone to mobility, fixation, orientation, and survival of the embryonic vesicle.  相似文献   

11.
The role of ovarian steroids in the preimplantation pig embryo was studied in vivo and in vitro. Twenty gilts were treated three times daily on days 1 to 4 after insemination with either 25, 100, 250, or 1000 mg progesterone in oil, and 17 gilts were injected with corresponding amounts of sesame oil (controls). All gilts were slaughtered 5 days after insemination and the embryos were recovered. Oviduct and plasma progesterone content were significantly (P<0.001) higher in gilts treated with 750 mg of exogenous progesterone per day. After 750 mg progesterone, oviduct progesterone content was twice as high as control levels, while after 3000 mg progesterone per day the levels in oviduct and uterus exceeded those of controls by five and seven times, respectively. In gilts treated with 750 mg progesterone per day, plasma progesterone levels were 177.4 ± 22.1 ng/ml (x ± SD) on day 3 and 186.4 ± 69.2 ng/ml on day 5 and resembled values found in superovulated pigs with more than 40 ovulations. Excessive plasma progesterone values of 1014.6 ± 840.4 ng/ml on day 3 and 473.2 ± 197.2 ng/ml on day 5 were found after treatment with 3000 mg of progesterone per day. Treatment with up to 750 mg of exogenous progesterone per day, did not affect embryonic development, but 3000 mg per day resulted in a significantly (P<0.001) higher percentage of retarded and degenerate embryos compared to controls (71.8% versus 3.2%).In addition, the amount and specificity of uptake of 3H-labelled progesterone and estradiol-17 beta by pig blastocysts recovered from superovulated gilts were investigated after 6 hrs in vitro culture. The uptake of 3H-progesterone was 131.9 ± 56.9 counts per million (cpm) per 10 blastocysts, corresponding to 1.1 fmoles progesterone. The uptake was non-specific for it was only slightly reduced in the presence of a 100-fold excess of unlabelled progesterone (20.1%) or estradiol-17 beta (27.0%). The uptake of 3H-estradiol-17 beta was 133.9 ± 74.12 cpm per 10 blastocysts, corresponding to 1.3 fmoles estradiol-17 beta. The uptake was significantly (P<0.01) reduced by 67.7% in the presence of a 100-fold excess of unlabelled estradiol-17 beta. Apparent specific binding was 0.87 fmoles estradiol-17 beta per 10 blastocysts or 72.5 fmoles estradiol-17 beta per mg protein. The uptake was only slightly reduced in the presence of a 100-fold excess of unlabelled progesterone (23.3%). This significant inhibition could be determined after 2 hrs in vitro culture. There was no competitive inhibition after 20 min. of culture.Uptake by unfertilized ova and degenerate embryos recovered on day 5 was significantly smaller (51.8 ± 10.3 cpm per 10 eggs; P<0.001) than by blastocysts recovered on the same day. No competitive inhibition could then be determined. In vivo, preimplantation pig embryos seem to be rather insensitive to high progesterone levels. Excessive amounts of progesterone probably can be metabolized to a great extent. Progesterone seems to be taken up rather non-specifically by the pig embryo. The uptake and binding of estradiol-17 beta seems to be more specific. Studies are in progress to investigate the physiological role of estradiol-17 beta uptake in early embryonic development.  相似文献   

12.
The objective of this study was to test the hypothesis that intrauterine administration of prostaglandin E(2) (PGE(2)) or estradiol-17beta (E-17beta) would prolong CL function in nonpregnant mares. Nonpregnant mares were continuously infused with 240 mug/d of PGE(2), 6 mug/d of E-17beta, or vehicle (sham-treated) on Days 10 to 16 post ovulation (ovulation = Day 0), using osmotic minipumps surgically placed into the uterine lumen on Day 10 (n = 11 per group). Nonpregnant and pregnant mares served as negative and positive controls, respectively (n = 11 per group). Mares were defined as having prolonged CL function if plasma progesterone remained > 2.5 ng/ml and if ovulation did not occur on Days 9 to 30. Corpus luteal function was prolonged until Day 30 in 1 11 nonpregnant mares, 4 11 sham-treated mares, 6 11 E-17beta-treated mares, 8 11 PGE(2)-treated mares, and 11 11 pregnant mares. The incidence of prolonged CL function was similar (P=0.16) in the sham-treated and nonpregnant mares. The hypothesis that PGE(2) would prolong CL function in nonpregnant mares was supported, since the incidence of prolonged CL function was higher (P=0.003) in PGE(2)-treated versus nonpregnant mares, tended to be higher (P=0.09) in PGE(2)-versus sham-treated mares, and was not lower (P=0.11) in PGE(2)-treated versus pregnant mares. The hypothesis that E-17beta would prolong CL function in nonpregnant mares was not supported, since the incidence of prolonged CL function was not higher (P=0.34) in E-17beta-versus sham-treated mares, and was lower (P=0.02) in E-17beta-treated versus pregnant mares. These results demonstrate that intrauterine administration of a pharmacologic dose of PGE(2) initiated prolonged CL function in nonpregnant mares. Further experiments are needed to confirm the role of conceptus secretion of PGE(2) in CL maintenance, and to determine the mechanism of action of PGE(2) within the equine reproductive tract.  相似文献   

13.
Two experiments were performed to determine changes in the abundance of oestrogen and progesterone receptor (ER alpha and PR) mRNAs in equine endometrium during the oestrous cycle and early pregnancy, and under the influence of exogenous steroids. In Expt 1, endometrial biopsies were obtained from non-mated mares during oestrus and at days 5, 10 and 15 after ovulation, and from pregnant mares at days 10, 15 and 20 after ovulation. There were overall effects of day on the abundance of ER alpha (P = 0.0001) and PR (P = 0.0014) mRNAs. The amount of ER alpha mRNA decreased at day 10 of pregnancy, and PR mRNA was reduced at day 5 in non-mated mares and at day 15 of pregnancy, compared with oestrous values. Experiment 2 was conducted to determine the effects of exogenous steroids on endometrial ER alpha and PR mRNAs. Endometrial biopsies were obtained from 19 anoestrous mares that had been treated with vehicle, oestradiol, progesterone, or oestradiol followed by progesterone for either a short or a long duration. The steroid treatment affected the abundance of ER alpha mRNA (P = 0.0420), which was higher (P < 0.05) in the oestradiol group than in the group treated with oestradiol followed by long duration progesterone. The steroid treatment did not affect the abundance of PR mRNA. These results demonstrate that the amount of steroid receptor mRNA changes with the fluctuating steroid environment in the uterine endometrium of cyclic and early pregnant mares, and that the duration of progesterone dominance may affect ER alpha gene expression. In addition, factors other than steroids may regulate ER alpha and PR gene expression in equine uterine endometrium.  相似文献   

14.
Nineteen anestrous pony mares were used in a project designed to determine the effects of altered prolactin concentrations on follicular dynamics and endocrine profiles during spring transition. The dopamine antagonist, perphenazine, was administered daily to mares (0.375 mg/kg body weight) in Group A (n = 6), while Group B mares (n = 7) received 0.08 mg/kg metabolic weight (kg75) dopamine agonist, 2-bromo-ergocriptine, intramuscularly twice daily. Mares in Group C (n = 6) received 0.08 mg/kg75, i.m., saline twice daily. Treatment began January 20, 1994, and continued until ovulation occurred. Mares were teased 3 times weakly with an intact stallion. The ovaries of the ponies were palpated and imaged weekly using an ultrasonic B-mode unit with a 5 Mhz intrarectal transducer until they either exhibited estrual behavior and had at least a 20-mm follicle, or had at least a 25-mm follicle with no signs of estrus. At this time, ovaries were palpated and imaged 4 times weekly. Blood samples were obtained immediately prior to ultrasonic imaging for measurement of prolactin, FSH and estradiol-17 beta. Perphenazine treatment advanced the spring transitional period and subsequent ovulation by approximately 30 d. Group A exhibited the onset of estrual behavior earlier (P < 0.01) than control mares. In addition, Group A mares developed large follicles (> 30 mm) earlier (P < 0.01) than Group B mares, with least square means for Groups A and B of 47.0 +/- 8.8 vs 88.1 +/- 8.2 d, respectively. Control mares developed 30-mm follicles intermediate to Groups A and B at 67.3 +/- 8.8 d. Bromocriptine decreased (P < 0.05) plasma prolactin levels throughout the study, while perphenazine had no significant overall effect. However, perphenazine treatment did increase (P < 0.05) mean plasma prolactin concentrations from Day 31 to 60 of treatment. There were no differences in mean plasma FSH or estradiol-17 beta between treatment groups. We concluded that daily perphenazine treatment hastened the growth of follicles and subsequent ovulation while bromocriptine treatment appeared to delay the growth of preovulatory size follicles without affecting the time of ovulation.  相似文献   

15.
In two experiments (30 mares/experiment), the uterus was recorded as having flaccid tone characteristic of estrus or seasonal anestrus (tone score 1), intermediate tone characteristic of diestrus (tone score 2), or increased or maximal tone characteristic of early pregnancy (tone score 3 or 4). In Experiment I (five mares/group), uterine tone in seasonally anovulatory mares was not altered significantly from the flaccid state by daily administration of 100 mg progesterone plus 1 mg estradiol 17beta or 1 mg estradiol 17beta alone. Uterine tone in seasonally anovulatory mares receiving 100 mg progesterone alone increased to intermediate level (score 2; P<0.05) and remained there throughout the treatment period. Tone scores in the group receiving a 14-d progesterone priming period followed by progesterone plus estradiol were higher (P<0.02) on Days 16 to 28 than scores in the group receiving progesterone alone throughout the treatment period. In Experiment II, (five mares/group), steroid treatments were begun on Day 10 postovulation. The combination of 1 mg exogenous estradiol plus progesterone produced greater uterine tone than exogenous progesterone alone. There were no significant differences between the pregnant control group and the group receiving progesterone plus 1 mg estradiol. There were no significant differences between the group receiving progesterone alone and the group receiving progesterone plus 5 mg estradiol. Results supported the hypothesis that the maximum uterine tone of early pregnancy is caused by progesterone priming followed by exposure to low levels of estradiol plus continued exposure to progesterone.  相似文献   

16.
This study was undertaken to elucidate the possible role of endotcxin in mediating premature luteolysis in the well- documented phenomenon of short estrous cycles in postpartum dairy cows. Four groups of Holstein heifers (n = 4 to 6 each) received either intrauterine infusion of sterile culture medium (Group I); intrauterine infusion of Escherichia coli (E. coli ) endotoxin (5 mug/kg) in sterile culture medium (Group II); intrauterine administration of 10 ml of a 24-h culture of a strain of E. coli isolated from the uterus of a cow with metritis (approximately 10(9) colony forming units/ml; Group III); or intravenous administration of E. coli endotoxin (5 mug/kg; Group IV) on Day 7-9 of the estrous cycle. Blood samples were collected every 48 h during the pretreatment estrous cycle and up to the administration of the experimental treatment, thereafter 4-h samples were collected for 5 d. Sample collection was then performed every 48 h for the remainder of the treatment cycle and the post treatment cycle. Serum concentrations of progesterone and plasma concentrations of 15-keto-13, 14-dihydroprostaglandin F(2alpha) (PGFM) were determined by radionmmunoassay. Intrauterine infusion of endotoxin had no effect on the cycle length or on hormone concentrations, while infusion of viable E. coli organisms tended to shorten the estrous cycle. Intravenous administration of endotoxin produced a sharp increase in both progesterone and PGFM concentrations, followed by a transient decrease in progesterone concentrations. Cycle length remained unchanged. It was concluded that the intact endometrium prevents the uptake of endotoxin although pathogenic E. coli organisms may disrupt the endometrial integrity sufficiently to shorten the estrous cycle by premature luteolysis. It is postulated that intravenous administration of endotoxin influences luteal function by the activation of the arachidonic acid cascade, by a direct effect on the corpus luteum, or via other mediators.  相似文献   

17.
《Theriogenology》1996,45(8):1443-1448
Equine embryos spend 5 to 6 d in the oviduct before entering the uterus as expanded blastocysts, and cannot be consistently collected nonsurgically until Day 7. Technologies such as cryopreservation and embryo splitting, which are most successful with embryos at the morula or early blastocyst stage, have not been used in mares because equine morulae and early blastocysts are located in the oviduct and cannot be recovered nonsurgically. These experiments test the hypothesis that transport of equine embryos through the oviduct can be hastened by cervical dilation or by acute, sterile endometritis induced by intrauterine oyster glycogen treatment. Cervical dilation with or without intrauterine infusion of 0.5 ml PBS on Day 4 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for mares with cervical dilation or cervical dilation plus PBS infusion vs mares receiving no treatments (0 of 5 and 0 of 5 vs 0 of 10, respectively). Intrauterine infusions of 40 ml of 1% oyster glycogen or 40 ml of PBS on Day 3 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for oyster glycogen- or PBS-treated vs untreated mares (2 of 12 and 3 of 11 vs 0 of 10, respectively). Cervical and uterine treatments on Day 3 or Day 4 and uterine lavages on Day 5 decreased (P < 0.05) Days 11 to Day 15 pregnancy rates compared with that of untreated mares. Day 11 to Day 15 pregnancy rates were 1 of 5 for mares with Day 4 cervical dilation and Day 5 uterine lavage, 1 of 5 for mares with Day 4 PBS infusion and Day 5 uterine lavage, 2 of 12 for mares with Day 3 oyster glycogen infusion and Day 5 uterine lavage, and 3 of 11 for mares with Day 3 PBS infusion and Day 5 uterine lavage vs 7 of 10 for mares that received no treatment or lavage. Cervical and uterine manipulations on Day 3 or 4 and uterine lavage on Day 5 appeared to decrease pregnancy rates by Days 11 to 15. The results of these experiments do not support the hypothesis that cervical dilation or uterine infusion hasten oviductal transport, since neither cervical manipulation nor transcervical infusion of oyster glycogen or PBS into the uterus significantly hastened the rate of embryo transport into the uterus.  相似文献   

18.
Twenty-one pregnant pony mares were assigned to one of the following groups: 1) controls, 2) ovariectomy at Day 12, 3) ovariectomy at Day 12 plus daily progesterone treatment on Days 12 to 40, 4) PGF(2alpha) on Day 12, 5) PGF(2alpha) on Day 21, and 6) PGF(2alpha) on Day 30. Based on daily examinations by ultrasound, the embryonic vesicle was maintained to Day 40 in all control mares and in mares that were ovariectomized on Day 12 and given progesterone. The embryonic vesicle was lost in all mares of the other four groups. Administration of progesterone prevented the embryonic loss associated with ovariectomy at Day 12, indicating that progesterone may be the only ovarian substance required for survival of the early embryo. The mean number of days to embryonic loss was greater for mares treated with PGF(2alpha) on Day 12 (6.8 days) than for mares ovariectomized on Day 12 (3.0 days). In the PGF(2alpha)-treated group, the vesicles did not become fixed at the expected time (Day 15), and mobility continued until the day of loss. In the mares treated with PGF(2alpha) on Day 21 and in one of the mares treated on Day 30, the vesicle was lost within one to three days without prior indication. Loss may have occurred by expulsion through the cervix, since the cervix was patent on the day of loss in these mares and in the mares ovariectomized or treated with PGF(2alpha) on Day 12. In the remaining mares treated on Day 30, the intact embryonic vesicle was dislodged on Day 31 or 32. The dislodged vesicle was mobile within the uterus and was frequently found in the uterine body. The fluid volume of the dislodged vesicle gradually decreased, and the fluid was no longer detected by Day 38 to 42. Some of the placental fluids may have been eliminated by resorption since the cervix remained closed while the fluid volume decreased.  相似文献   

19.
Control of the equine estrous cycle was studied by suppressing gonadotropin secretion by administration of a GnRH antagonist to cyclic pony mares. Four mares received vehicle (control cycle) or a GnRH antagonist, Antarelix (100 microg/kg) on Day 8 of diestrus, and blood samples were collected at 15-min intervals from 0 to 16 h, 24 to 36 h, and daily until the next ovulation. Ovarian activity was monitored by transrectal ultrasonography, and measurement of plasma concentrations of progesterone and estradiol. Antagonist treatment eliminated large diestrous pulses of LH. Progesterone concentrations had fallen significantly in all mares by the day after treatment and, in three of the four mares, remained low until luteolysis. However timing of luteolysis (ie., progesterone concentrations <1 ng/mL) was not affected by antagonist treatment. The preovulatory surges of estradiol and LH were significantly delayed in the treatment cycle, as was the appearance of a preovulatory follicle >30 mm. Cycle length was significantly longer during the treatment than the control cycle. These results show that treatment of diestrous mares with a GnRH antagonist attenuated progesterone secretion, indicating a role for LH in control of CL function in the mare, and delayed ovulation presumably because of lack of gonadotropic support.  相似文献   

20.
Ball BA  Miller PG  Daels PF 《Theriogenology》1992,38(6):1055-1063
The influence of exogenous progesterone on the development of equine oviductal embryos was determined based upon the recovery of Day-7 uterine blastocysts from treated mares (n=13) that were given 450 mg progesterone daily between Days 0 and 6 and from untreated control mares (n=13). Daily administration of 450 mg progesterone in oil significantly (P<0.02) increased serum progesterone concentrations in the treated mares. There was no significant difference in the recovery rate of Day-7 embryos between treated and control mares (8/13 versus 6/13, respectively). Embryonic development, assessed by morphologic evaluation, embryo diameter, and number of cell nuclei was not significantly different for embryos from treated and from control mares. The results of this study indicate that administration of progesterone beginning on the day of ovulation does not affect the embryo recovery rate or embryonic development, based on evaluation of uterine blastocysts recovered at Day 7 after ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号