首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A simple and efficient regeneration protocol was established for soybean [Glycine max (L.) Merrill]. Cotyledonary node explants from 7-day-old in vitro seedlings were used as explants. The effect of different plant growth regulators [N 6 –benzyladenine (BA), kinetin (KT), thidiazuron (TDZ), gibberellic acid (GA3), zeatin riboside (ZTR), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA)] along with polyamines (Spermidine, spermine, and putrescine) were investigated at different stages of regeneration using direct organogenesis system. Exogenous spermidine (137.69 μM) in shoot induction medium containing optimal BA concentration (2.22 μM) induced maximum number of shoots (39.02 shoots/explant) compared to BA (2.22 μM) alone. Regenerated shoots elongated well in shoot elongation medium containing GA3 (1.45 μM) and spermine (74.13 μM), and developed profuse roots in root induction medium containing putrescine (62.08 μM). Rooted plantlets were successfully hardened and acclimatized with a survival rate of 92 %. The amenability of the standardized protocol using cultivar PK 416 was tested on four more Indian soybean cultivars JS 90–41, Hara soy, Co1, and Co2 of which PK 416 was found to be the best responding cultivar, with a maximum of 96.94 % shoot induction.  相似文献   

2.
Abstract The influence of putrescine (Put) and AgNO3 on shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow local was investigated. Exogenous administration of Put at a concentration of 40 mM resulted in maximum tissue response in terms of shoot numbers (34.6 ± 2.61) and shoot lengths (7.6 ± 0.57 cm) on MS media supplemented with 2-iP (2.0 mg L−1) and GA3 (0.5 mg L−1) as observed on the 35th day. Exogenous application of 40 μM AgNO3 resulted in maximum shoot number (36.8 ± 2.63) and shoot lengths (7.9 ± 0.76 cm) on day 35 on the same media. Endogenous titers of conjugated spermidine decreased sharply from day 7–21, whereas endogenous conjugated spermine levels peaked on day 28 (1265 ± 94.9 nmoles g−1 FW), after treatment with 40 mM Put. Whereas, AgNO3 (40 μM) fed samples resulted in higher titers of endogenous conjugated spermine (1405 ± 105.6 nmoles g−1 FW, 3.62 fold over control) on day 14. All other treatments showed decreasing endogenous levels during the whole culture period. Both Put (40 mM) and AgNO3 (40 μM) resulted in floral initiation and floral development on day 28 and 14 (3.76 ± 0.16, 4.2 ± 0.21 flowers per shoot apices), respectively. To investigate the role of Put (40 mM) and AgNO3 (40 μM) on morphogenetic response and endogenous conjugated polyamine titers in shoots of chicory, polyamine inhibitors (DFMA and DFMO) were used. The morphogenetic response and the endogenous conjugated pool of polyamines were diminished in DFMA and DFMO treatments, but could be restored by addition of Put (40 mM) and AgNO3 (40 μM). Under exogenous Put feeding, ethylene production was reduced in shoot cultures of chicory. This study shows for the first time the influence of polyamines on multiple shoot initiation from axillary buds of C. intybus L. cv. Lucknow local and also indicates the promotive effect of Put and AgNO3 on autoregulation of polyamine biosynthesis, thereby regulating in vitro flowering, the endogenous pool of polyamines and shoot multiplication. Received 12 November 1999; accepted 11 February 2000  相似文献   

3.
Catharanthus roseus (L.) G. Don is an economically and medicinally important plant since its leaves and flowers contain terpenoid indole alkaloids. The present study, for the first time, encompasses the influence of silver nitrate (AgNO3), in consort with cytokinins like N 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin), to regenerate multiple shoots from nodal segments explants and to induce high-frequency precocious flowering of C. roseus under in vitro condition. Synergistic effect of equal concentrations of BA and kinetin was enhanced following the amalgamation of AgNO3. As high as 98% explants responded to multiple shoot initiation and proliferation in Murashige and Skoog medium supplemented with 3 µM BA, 3 µM kinetin and 0.1 µM AgNO3. As many as 7 shoots were developed per explant following 12 days of inoculation. Continuous culture in the same medium for 21 days induced precocious flowering from 75% shoots, wherein a maximum of ~?6 (5.67?±?0.88) flowers was observed per in vitro shoot. On the other hand, in the combinations of BA and kinetin excluding AgNO3, a maximum of 6.67% explants responded and initiated merely 3.33 shoots per explant. Nevertheless, no induction of flower was observed in the media devoid of AgNO3. Our results on the induction and proliferation of multiple shoots with simultaneous flowering would help the global pharmaceutical industry to produce in vitro shoots and flowers in bulk, as an alternative source of alkaloids.  相似文献   

4.
Direct differentiation of shoot buds in Coffea dewevrei was evident from the seedling shoots with collar region and also from collar region end of hypocotyl segments in presence of 40 μM AgNO3, 8.88 μM of BA and 2.85 μM of IAA. Apart from this, shoot end of hypocotyl explants mainly supported yellow friable callus or somatic embryos. Subsequent transfer to the same medium induced secondary somatic embryogenesis. The collar region of the hypocotyl explants not only showed direct organogenesis by producing 1–3 shoots per explant and also able to produce globular somatic embryos and embryogenic yellow friable callus. Similarly direct somatic embryogenesis along with yellow friable embryogenic callus formation on 1/2 strength MS medium comprising 1.47 μM IAA, 2.22 μM BA and 40 μM AgNO3 was noticed from cut portion of in vitro leaf and stalk of regenerated plants. The microshoots rooted well upon subculturing onto the same medium in 6 weeks and showed 60 % survival in green house and resumed growth upon hardening.  相似文献   

5.
Bud emergence and shoot growth from adult phase citrus nodal cultures were studied using Citrus mitis (calamondin), Citrus paradisi (grapefruit), and Citrus sinensis (sweet orange). The effects of 6-benzyladenine (BA), indole 3-acetic acid (IAA), and citrus type on shoot quality and growth of mature bud explants from greenhouse grown trees were determined using a 2-component mixture-amount × citrus type experiment. BA increased shoot number and IAA improved shoot growth. The best shoot quality (fewer shoots but large shoots) was obtained with 1 μM IAA for calamondin, 15.5 μM IAA for sweet orange, and 30 μM IAA for grapefruit. Grapefruit exhibited substantial leaf abscission compared to calamondin and sweet orange. Four factors (AgNO3, silver thiosulphate (STS), CaNO3, or gelling) were screened individually for their efficacy in reducing leaf abscission. Five factors (AgNO3, gelling, MS ion concentration, plant growth regulator and venting) were investigated to identify potential combinations for reducing leaf abscission and maximizing shoot growth and bud emergence. The factor combination identified as most effective in minimizing leaf drop, promoting shoot growth, and maximizing bud emergence for grapefruit was 2 mg l?1 AgNO3, Gelrite, 1 × MS ion concentration, 30 μM IAA, and vented.  相似文献   

6.
A simple and efficient regeneration protocol was developed for watermelon from cotyledonary node explants excised from 7-day-old in vitro grown seedlings. This study describes the effect of amino acids and polyamines (PAs) along with plant growth regulators (PGRs) on multiple shoot induction and rooting. The highest number of multiple shoots (46.43 shoots/explant) was obtained from cotyledonary node and they were also elongated (6.3 cm/shoot) on MS medium supplemented with 1 mg l??1 N 6 –Benzyladenine (BA), 5 mg l??1 leucine, and 10 mg l??1 spermidine. The elongated shoots developed profuse roots (23.03 roots/shoot) in MS medium containing 1 mg l??1 indole-3-butyric acid (IBA), 5 mg l??1 isoleucine, and 10 mg l??1 putrescine. All the rooted plantlets were successfully hardened and acclimatized in the greenhouse with a survival rate of 98%. The present study described an efficient method to obtain a 1.5-fold increase in the number of shoots, compared with the available regeneration protocols for watermelon. The plants developed in this study showed fivefold higher photosynthetic pigments compared to the control plants. The genetic fidelity of the regenerated plants was evaluated by SCoT and RAPD marker analyses, and banding patterns confirmed the true-to-type nature of in vitro regenerated plants.  相似文献   

7.
The genetic manipulation of Capsicum has been unsuccessful, and a large bottleneck to transferring the desired genes is due to the difficulty in regenerating whole plants through tissue culture because of its highly recalcitrant and high genotype specificity. This study aimed to investigate and establish rapid shoot regeneration from the proximal ends of the leaves of Capsicum frutescens KT-OC and BOX-RUB varieties. A maximum of 8–10 shoot buds were obtained from the margins of the proximal portion of a cotyledonary leaf explant of C. frutescens variety KT-OC on medium I containing 44.44 µM 6-benzylaminopurine (BA), 5.71 µM indole-3-acetic acid (IAA), 10 µM silver nitrate (AgNO3) and 1.98 mg L?1 2-(N-morpholine) ethane sulphonic acid within 4 weeks of incubation, of which 60% of explants responded in terms of shoot buds. Petiole explants (40%) cultured on the same medium produced 2–4 shoots per explant from the distal portion. The cut portions of the cotyledonary leaf proximal portions responded well to shoot bud formation in the presence of 22.20 µM BA and 14.68 µM phenyl acetic acid (PAA), wherein 100% of explants responded in terms of shoot bud formation, with an average of 10?±?1.7 and 8?±?1.9 shoot buds per explant in KT-OC and BOX-RUB varieties, respectively. The differentiated shoots grew well and proliferated in the presence of 14.68 µM PAA?+?22.20 µM BA and 10 µM AgNO3. Shoot elongation was obtained in presence of 1.44 µM gibberellic acid (GA3) and 10 µM AgNO3. These shoots were rooted on plant growth regulator-free half-strength MS medium and upon hardening; field survival rate was 70%. This reproducible regeneration method for C. frutescens, especially the Indian high pungent variety, from proximal portion of cotyledonary leaf and petiole explants, can be used for biotechnological improvement.  相似文献   

8.
Multiplication of Moringa oleifera shoots on MS medium supplemented with 2.5 µM BAP for 3 weeks resulted in shoot vitrification which led to chlorosis, retardation of shoot formation, reduction in shoot length, necrosis of shoot tips and formation of friable calli on the base of cultured explants. Vitrification symptoms decreased when MS medium containing 2.5 µM BAP in combination with 10 µM AgNO3, 50 µM salicylic acid (SA) or 200 µM CoCl2 was used. Studying isoenzyme patterns of SOD, POX, CAT, GOT and EST indicated that moringa shoots multiplied without obvious variation in isoenzyme patterns up to 7 subcultures. Moringa shoots subjected to 14 subcultures and anti-ethylene compounds showed variation in isoenzyme patterns and were associated with the disappearance of vitrification which facilitated root formation and acclimatization. Under long term cultures, RAPD, ISSR and SSR indicated that AgNO3 was the optimal anti-ethylene substance for avoidance of vitrification in moringa but it resulted in high somaclonal variation. Application of SA decreased vitrification as well as somaclonal variation compared to CoCl2 under long term culture. Consequently, SA was recommended for moringa clonal multiplication.  相似文献   

9.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

10.
An in vitro organogenesis protocol for Carissa carandas L. was developed using an auxin transport inhibitor (quercetin) and silver nitrate (AgNO3), an inhibitor of ethylene action, in association with cytokinins in the culture medium. This protocol produced the maximum number of shoots from aseptic seedling-derived shoot apex explants of C. carandas. The highest rate of shoot multiplication was recorded on MS medium containing 2.0 mg L?1 6-benzylaminopurine; 0.5 mg L?1 kinetin, and 0.75 mg L?1 quercetin at after 4 wk of culture. Similar results were obtained when MS medium fortified with 2.0 mg L?1 BAP, 0.5 mg L?1 kinetin, and 1.5 mg L?1 AgNO3 was used. However, successful rooting was achieved on quarter strength MS medium with 0.5 mg L?1 indole-3-acetic acid. In this study, an inhibitor of auxin transport and ethylene action maximized shoot multiplication in medium fortified with cytokinins. The established rapid micropropagation method could be used to conserve elite genotypes of C. carandas.  相似文献   

11.
The influence of polyamine putrescine (PUT), and polyamine inhibitors were tested for in vitro rooting response from micro shoots that initially established on Murashige and Skoog (MS) medium comprising 2.7 µM α-Naphthaleneacetic acid (NAA) and 8.9 µM 6-Benzylaminopurine (BA) by using nodal explants of Decalepis hamiltonii. Incorporation of putrescine alone in rooting medium devoid of auxins supported the best response for in vitro rooting qualitatively and quantitatively. Incorporation of putrescine at 50 µM able to induce 8.62?±?1.93 roots with a maximum root length of 9.10?±?1.65 cm wherein, the root fresh weight was also found to be high compared to all other treatments (5.248?±?1.71 g). Addition of putrescine inhibitor cyclohexylamine (CHA) in medium curtailed rooting response from microshoots. Among the three polyamine inhibitors, CHA in presence of 9.8 µM Indole-3-butyric acid (IBA) outperformed α-DL-difluromethylarginine (DFMA) and α-DL-difluoromethylornithine (DFMO) combination with 9.8?µM IBA. The least response for root number (1.55?±?0.72), root length (1.96?±?0.45 cm), and root weight (1.94?±?0.35 g) was found for IBA?+?PUT?+?DFMA and the best response was noted for IBA?+?PUT?+?CHA (2.6?±?1.1, 2.92?±?0.73 cm, 3.03?±?0.75 g) respectively. Endogenous content of putrescine, spermidine and spermine supported the rooting response from in vitro shoots. These results have clearly demonstrated that putrescine plays a crucial role in rooting of D. hamiltonii. Plantlets were transferred to micro-pots for a short acclimatization stage in greenhouse where they survived at 90?%. This highly reproducible procedure can be adopted for large scale swallow root propagation. Overall, supplementing putrescine in the rooting medium enhances the quantity and quality of roots in D. hamiltonii, thus confirming its role.  相似文献   

12.
The influence of ethylene and ethylene modulators on the in vitro organogenesis of tomato was studied using a highly regenerating accession of the wild tomato Solanum pennellii and an F1 plant resulting from a cross between Solanum pennellii and Solanum lycopersicum cv. Anl27, which is known to have a low regeneration frequency. Four ethylene-modulating compounds, each at four levels, were used, namely: cobalt chloride (CoCl2), which inhibits the production of ethylene; AgNO3 (SN), which inhibits ethylene action; and Ethephon and the precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which both promote ethylene synthesis. Leaf explants of each genotype were incubated on shoot induction medium supplemented with each of these compounds at 0, 10 or 15 days following bud induction. The results obtained in our assays indicate that ethylene has a significant influence on tomato organogenesis. Concentrations of ethylene lower than the optimum (according to genotype) at the beginning of the culture may decrease the percentage of explants with buds (B), produce a delay in their appearance, or indeed inhibit bud formation. This was observed in S. pennellii and the F1 explants cultured on media with SN (5.8–58.0 μM) as well as in the F1 explants cultured on medium with 21.0 μM CoCl2. The percentage of explants with shoots (R) and the mean number of shoots per explant with shoots (PR) also diminished in media that contained SN. Shoots isolated from these explants were less developed compared to those isolated from control explants. On the other hand, ethylene supplementation may contribute to enhancing shoot development. The number of isolable shoots from S. pennellii explants doubled in media with ACC (9.8–98.0 μM). Shoots isolated from explants treated with ethylene releasing compounds showed a higher number of nodes when ACC and Ethephon were added at 10 days (in F1 explants) or at 15 days (in S. pennellii) after the beginning of culture. Thus, the importance of studying not only the concentration but also the timing of the application of regulators when developing regeneration protocols has been made manifest. An excess of ethylene supplementation may produce an inhibitory effect, as was observed when using Ethephon (17.2–69.0 μM). These results show the involvement of ethylene in tomato organogenesis and lead us to believe that ethylene supplementation may contribute to enhancing regeneration and shoot development in tomato.  相似文献   

13.
The present study reports a high frequency in vitro propagation protocol through apical bud sprouting and basal organogenic nodule formation in shoot tip explants of Decalepis hamiltonii, an endemic and endangered medicinal liana. Among different combinations of plant growth regulators (PGRs) and growth additives, maximum of 8.20 shoots per explant with mean shoot length of 6.54 cm were induced on Murashige and Skoog’s medium (MS) supplemented with 5.0 µM 6-benzyladenine (BA) + 0.5 µM indole-3-acetic acid (IAA) + 30.0 µM adenine sulphate (ADS) through apical bud sprouting. On single cytokinin treatment explants did not exhibit good multiplication but showed nodulation (N1) from the basal cut end similar to cytokinin–auxin combination (N2). Between two types of nodular tissues, N2 was proved to be better for maximum shoot regeneration (15.40 shoots per explant) and shoot length (4.56 cm) when cultured on MS medium supplemented with 5.0 µM BA, 0.5 µM IAA, 30.0 µM ADS and 1.0 µM gibberellic acid (GA3). Microshoots were efficiently rooted on half-strength MS medium supplemented with 2.5 μM α-naphthalene acetic acid (NAA). After successful acclimatization in Soilrite, 95.10 % plantlets were survived in field conditions. Histological investigation proved useful in ascertaining the callogenic nature of the regenerating nodular tissue formed at the basal cut end of shoot tip explant. Acclimatized plantlets were studied for the estimation of chlorophyll and carotenoid content as well as the net photosynthetic rate (PN) during subsequent days of transfer to ex vitro condition. Moreover, acclimatization had a significant effect on biomass production and the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2HMB). Maximum fresh weight (3.78 gm/plant), dry weight (0.39 gm/plant) of roots and 2HMB content (15.94 µg/ml of extract) were noticed after 8 weeks of acclimatization.  相似文献   

14.
Factors affecting in vitro propagation were evaluated for Ceropegia attenuata Hook., an endemic and endangered plant having ornamental potential but a limited reproductive capacity. Rapid shoot multiplication from nodal explants was established using varying concentrations of cytokinins and auxins either alone or in combinations. The highest frequency of shoot induction was achieved when nodal explants were inoculated on Murashige and Skoog (MS) medium supplemented with 13.31 μM 6-benzylaminopurine with a mean of 12.9?±?0.5 shoots per explant. High concentrations of TDZ (6.81–11.35 μM) and KN (6.78–11.61 μM) resulted in stunted and vitrified shoots. Factors implicated in the promotion of floral transition of the C. attenuata have been identified which are 4-amino-3, 5, 6-trichloropicolinic acid (picloram), 6-benzylaminopurine, sucrose and photoperiod. The highest frequency of flowering (100%) was obtained when axillary shoot explants were transferred to MS medium supplemented with picloram (4.14 μM) within 4 weeks of culture. Transfer of in vitro regenerated shoots to half strength MS medium with 2.46 μM indole-3-butyric acid (IBA) showed maximum root induction. The in vitro grown plantlets were successfully acclimatized in the glasshouse with 85% of survival and showed normal development. The developed protocol provided a simple, cost-effective approach for the conservation of endangered plant C. attenuata for replenishing its declining populations.  相似文献   

15.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature petiole explants of West Indian gherkin (Cucumis anguria L.). Calluses were induced from immature petiole explants excised on 7-day-old in vitro seedlings and mature petiole explants of 40-day-old in vivo plants. The maximum frequency of immature petiole explants (98.0 %) and mature petiole (91.5 %) produced green, compact organogenic callus in Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l?1 sucrose, 8.0 g l?1 agar and 4.0 μM naphthalene acetic acid (NAA) with 2.0 μM benzyl amino purine (BAP) after two successive subculture at 11 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MSB5 medium supplemented with 3.0 μM TDZ, 1.0 μM NAA and 0.05 mM L-glutamine with shoot induction frequency of immature petiole 45 shoots and mature petiole 40 shoots per explant. The shoots were excised from callus and elongated in MSB5 medium fortified with 3.0 μM gibberellic acid (GA3). Then elongated shoots were rooted in half strength MSB5 medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Plantlets with well-developed shoot and root systems were successfully acclimatized (95 %) in winter season and exhibited normal morphology and growth characteristics. The survival percentage differed with seasonal variations.  相似文献   

16.
Here, we report an efficient and widely applicable method for cryopreservation of Malus shoot tips by encapsulation–dehydration using adventitious shoots. Shoots were induced from leaf segments cultured on a shoot induction medium containing 2–3 mg L?1 thidiazuron, depending on genotype, and 0.5 mg L?1 indole-3-butyric acid. Shoot tips (3 mm in length) containing six leaf primordia excised from 11-wk-old adventitious shoots were encapsulated and precultured with 0.5 M sucrose for 5 d, followed by air-drying for 6 h prior to direct immersion in liquid nitrogen. With our protocol, we obtained a mean organogenesis rate of 100%, a mean of 4.5 adventitious shoots per explant (leaf segment), and a mean shoot recovery of 57.0% from cryopreserved shoot tips in four Malus species. Inter-simple sequence repeat (ISSR) analysis did not reveal any polymorphic bands in regenerants recovered from either leaf segments or cryopreserved shoot tips of ‘Gala’. To the best of our knowledge, this is the first report on cryopreservation of Malus shoot tips using adventitious shoots derived from leaf segments and is the most widely applicable protocol so far reported for cryopreservation of Malus. Establishment of this protocol provides an alternative means for cryopreservation of Malus.  相似文献   

17.
Pelargonium × hortorum ‘Grand Prix’ which is susceptible to leaf yellowing and ‘Bergpalais’ which is not susceptible to leaf yellowing were chosen for the experiments. Ethylene production and action as well as the associated morphological response of Pelargonium shoots grown in the presence of a precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene inhibitors: α-aminooxyacetic acid (AOA) and silver nitrate (AgNO3) and different cytokinins: (meta-topolin) (mT) or 6-benzylaminopurine (BAP) were studied. It was found that ‘Grand Prix’ was more sensitive to ethylene than ‘Bergpalais’ and it showed the leaf yellowing in response to 0.1 mg l?1 ACC. Moreover, it was noted that ACC added separately or together with cytokinin influenced Pelargonium morphogenesis. Depending on the concentration of ACC (0.1–2.0 mg l?1), it either stimulated or inhibited shoot and root formation as well as the growth of shoots and leaf blades. ACC-induced leaf yellowing in ‘Grand Prix’ was effectively inhibited by mT. In contrast, BAP did not enhance shoot quality. Simultaneously, the presence of mT in the medium resulted in up to a twofold increase in the ethylene production by ‘Grand Prix’ shoots throughout the culture period compared with the shoots growing on the BAP-medium. The inhibitor of ethylene action (AgNO3) added with cytokinin prevented the yellowing of Pelargonium shoots, but simultaneously influenced the formation of mature shoots with limited long-term multiplication potential. The shoots of P. × hortorum ‘Grand Prix’ treated with AgNO3 and mT emitted two- and sevenfold more ethylene after 11th and 21st day of culture compared with those treated with AgNO3 and BAP. It is suggested that mT inhibits the early senescence of Pelargonium in vitro by decreasing its sensitivity to ethylene.  相似文献   

18.
In order to further increase shoot regeneration frequency of Vigna mungo (L.) Hepper., the effects of AgNO3 on this process was investigated in this study. The shoot tip and cotyledonary node explants were cultured on MS salts B5 Vitamins medium containing BA+TDZ+Ads+AgNO3 for multiple shoot induction. AgNO3 influenced the shoot bud formation and their subsequent proliferation. The best medium composition for multiple shoot induction was BA, TDZ combination with Ads and AgNO3 in MSB5 medium. Maximum 39 shoots in cotyledonary node and 22 shoots in shoot tip were obtained per explants after 4 – 6 wk. of culture. Elongation and rooting were performed in GA3 (0.6mg/l) and IBA (0.4mg/L) containing media respectively. The in vitro raised plantlets were acclimatized in green house and successfully transplanted to the field with a survival rate of 78%.  相似文献   

19.
An efficient, one step and genotype independent protocol of shoot organogenesis was developed from leaf and internodal explants taken from microshoots of different cultivars of potato (Solanum tuberosum L.). Initially, microshoots were cultured on basal Murashige and Skoog medium additionally supplemented with 10 µM AgNO3 (MS1 medium) to achieve healthy shoot growth required to get the quality explants. Shoot organogenesis was induced from both types of explants (leaf and internodal) on MS1 medium variously supplemented with 6-benzyladenine (BA) and gibberellic acid (GA3). Maximum explants were induced shoot organogenesis on MS1 medium supplemented with 10 µM BA and 15.0 µM GA3 from both the cultivars namely ‘Kufri Chipsona 1’ and ‘Kufri Pukhraj’. Among the types of explants used, better response was observed from internodal segments as compared to leafs. This optimized medium combination was found to be equally effective for all the eight cultivars tested namely ‘Kufri Pukhraj’, ‘Kufri Chipsona 1’, ‘Kufri Chipsona 2’, ‘Kufri Jyoti’, ‘Kufri Surya’, ‘Kufri Chandramukhi’, ‘Kufri Khyati’ and ‘Desiree’. The clonal uniformity of the regenerated shoots was confirmed using random amplified polymorphic DNA and inter-simple sequence repeats markers.  相似文献   

20.
Selaginella, an extant genus of primitive vascular plants, has survived over 400 million years of evolution. In vitro morphogenesis in Selaginella microphylla is considered for the first time to establish a well-documented aseptic culture on half- strength Murashige and Skoog’s basal medium with 2ip (4.92–49.21 μM), or Kn (4.65–46.47 μM) or GA3 (2.89–28.90 μM) for shoot multiplication, and with different concentrations of IBA (4.9–49 μm) to initiate root cultures. GA3 was instrumental for shoot multiplication as well as induction of reproductive structures in each and every leaf axil. On the other hand, it is observed that IBA alone in S. microphylla can act as signal molecules for induction of enormous numbers of root masses from a few existing roots. An interesting pattern of re-differentiation has also been observed where apical portions of large numbers of roots were converted to green shoot apical meristems. Further differentiation produced tiny green shoots. Distinct bipolarity was noted in shoots when they were isolated from root masses and appeared as embryo-like structures. Chromosome analysis from in vitro sporophytic plants revealed 2n = 16 chromosomes, indicating chromosomal stability. The interesting in vitro pattern of morphogenesis obtained in S. microphylla may provide new insights into totipotency of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号