首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants respond adaptively to herbivore stress in order to maintain fitness. Upon herbivore attack, plants emit blends of volatile organic compounds (VOCs) that differ from those that are constitutively emitted. These defense responses are typically specific to the identity of the attacking herbivore and often linked to the herbivore's feeding guild (e.g. chewing, phloem-feeding). Herbivores use plant volatiles to locate suitable host plants and changes in volatile emissions can affect host-plant location. Therefore, herbivores from separate feeding guilds can interact indirectly through the modulation of plant responses. In this study we tested how damage by an herbivore from one feeding guild affected the host-plant choice of an herbivore from a separate feeding guild, and vice versa. A chewing herbivore, the Colorado potato beetle (Leptinotarsa decemlineata), and a phloem feeding herbivore, the green peach aphid (Myzus persicae), were assayed in olfactometers to assess behavioral responses to odors emitted by potato plants (Solanum tuberosum) that were damaged by herbivores from the other feeding guild. Leptinotarsa decemlineata oriented more frequently towards undamaged plants compared to M. persicae damaged plants. Surprisingly, M. persicae preferred plants that were damaged by L. decemlineata, although previous studies had shown that they perform worse on these plants. Distinct differences were detected in the volatile profiles of herbivore-damaged and undamaged plants. Leptinotarsa decemlineata induced stronger volatile emissions compared to undamaged control plants, while M. persicae tended to suppress volatile emissions. These herbivores demonstrate contrasting induction of plant volatiles and behavioral responses. Exploring the nature of co-occurring herbivores and how they perceive potential hosts can play a significant role in understanding the ecological functions and community dynamics of plant plasticity and interactions with a variety of herbivores.  相似文献   

2.
This study examines allelopathic potential of genetically modified rice. The experiment was conducted on two isogenic lines Bacillus thuringiensis (Bt) and non-Bacillus thuringiensis (non-Bt). Both isogenic lines have same allelopathic ability before insect feeding and after limited insect feeding (Spodoptera litura) non-Bt rice genotype demonstrates more allelopathic potential. The S. litura cannot feed Bt rice genotype. The role of shoot herbivory in allelopathic induction is further supported when Bt plants also exhibited higher allelopathic potential after insect regurgitant application to the damaged leaves. Allelopathic potential was assessed through several methods after treatments of mechanical damage, insect feeding and insect regurgitant application to damaged rice leaves. Rhizosphere soil and leaf leachates of non-Bt rice cultivar exhibited higher allelopathic potential on lettuce and barnyard grass after herbivore feeding. Enzyme activities (PAL and C4H) responsible for biosynthesis of phenolic compounds and their concentration were significantly higher in non-Bt plant after herbivore feeding and attain the same level in Bt plants after insect regurgitant application to damaged leaves. Similarly, genes (OsPAL and OsCYC1) responsible for biosynthesis of allelopathic compounds showed high expression in non-Bt plants after herbivore feeding. Our results indicate that herbivore feeding enhance rice allelopathic potential and no insect feeding as incase of Bt plants may reduce allelopathic potential of genetically modified rice.  相似文献   

3.
Plants damaged by herbivores emit blends of volatile organic compounds (VOCs) that attract the herbivore’s natural enemies. Most work has focussed on systems involving one plant, one herbivore and one natural enemy, though, in nature, plants support multiple herbivores and multiple natural enemies of these herbivores. Our study aimed to understand how different aphid natural enemies respond to aphid-induced VOCs, and whether attraction of the natural enemies that responded to aphid-induced VOCs was altered by simultaneous damage by a chewing herbivore. We used a model system based on Brassica juncea (Brassicaceae), Myzus persicae (Hemiptera: Aphididae) and Plutella xylostella (Lepidoptera: Plutellidae). Ceraeochrysa cubana (Neuroptera: Chrysopidae) did not show preferences for any plant odour, while Cycloneda sanguinea (Coleoptera: Coccinellidae) responded to undamaged plants over air but not to aphid-damaged plants over undamaged plants. Therefore, no further tests were carried out with these two species. Chrysoperla externa (Neuroptera: Chrysopidae) preferred aphid-damaged plants, but not caterpillar-damaged plants, over undamaged plants, and preferred plants damaged by both herbivores over both undamaged plants and aphid-damaged plants. When tested for responses against undamaged plants, Aphidius colemani (Hymenoptera: Braconidae) preferred aphid-damaged plants but not plants damaged by caterpillars. Plants damaged by both herbivores attracted more parasitoids than undamaged plants, but not more than aphid-damaged plants. Thus, multiply damaged plants were equally attractive to A. colemani and more attractive to C. externa than aphid-damaged plants, while C. cubana and C. sanguinea did not respond to aphid-induced VOCs, highlighting how different natural enemies can have different responses to herbivore-damaged plants.  相似文献   

4.
Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae), a major larval endoparasitoid of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), also attacks many other noctuid caterpillars. We investigated the attractiveness of H. armigera‐ and Pseudaletia separata (Lepidoptera: Noctuidae)‐infested maize [Zea mays L. (Poaceae)] plants to C. chlorideae, and analyzed the volatiles emitted from infested plants and undamaged plants. Considering the reported specific induction of plant volatiles by elicitors in the caterpillar regurgitant, we also tested the response of the parasitoid to mechanically damaged plants treated with caterpillar regurgitant or water and measured the volatiles released by these plants. In wind‐tunnel bioassays, C. chlorideae was strongly attracted to herbivore‐induced maize volatiles. Mechanically damaged plants, whether they were treated with caterpillar regurgitant or water, were more attractive to the parasitoid than undamaged plants. The parasitoid did not distinguish between maize seedlings infested by the two noctuid insects, nor did they show a difference in attraction to mechanically damaged plants treated with caterpillar regurgitant or water. Coupled gas chromatography–mass spectrometer (GC‐MS) analysis revealed that 15 compounds were commonly emitted by herbivore‐infested and mechanically damaged maize plants, whereas only two compounds were released in minor amounts from undamaged plants. Infestation by H. armigera specifically induced four terpenoids, β‐pinene, β‐myrcene, D‐limonene, and (E)‐nerolidol, which were not induced by infestation of P. separata and mechanical damage, plus caterpillar regurgitant or water. Two compounds, geranyl acetate and β‐sesquiphellandrene, were also induced by the infestation of H. armigera, but not by the infestation of P. separata. All treated maize plants released volatiles in significantly larger total amounts than did undamaged plants. Maize plants infested by H. armigera emitted greater amounts of volatiles than plants infested by P. separata. The treatment with caterpillar regurgitant resulted in larger amounts of volatile emission than the treatment with water did in mechanically damaged plants. The amounts of emissions of individual compounds were also different between differently treated plants.  相似文献   

5.
Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.  相似文献   

6.
The boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae), is a key pest of cotton, Gossypium hirsutumL. (Malvaceae). Knowledge about boll weevil feeding and oviposition behavior and its response to plant volatiles can underpin our understanding of host plant resistance, and contribute to improved monitoring and mass capture of this pest. Boll weevil oviposition preference and immature development in four cotton genotypes (CNPA TB90, TB85, TB15, and BRS Rubi) were investigated in the laboratory and greenhouse. Volatile organic compounds (VOCs) produced by TB90 and Rubi genotypes were obtained from herbivore‐damaged and undamaged control plants at two phenological stages – vegetative (prior to squaring) and reproductive (during squaring) – and four collection times – 24, 48, 72, and 96 h following herbivore damage. The boll weevil exhibited similar feeding and oviposition behavior across the four tested cotton genotypes. The chemical profiles of herbivore‐damaged plants of both genotypes across the two phenological stages were qualitatively similar, but differed in the amount of volatiles produced. Boll weevil response to VOC extracts was studied using a Y‐tube olfactometer. The boll weevil exhibited similar feeding and oviposition behavior at the four tested cotton genotypes, although delayed development and production of smaller adults was found when fed TB85. The chemical profile of herbivore‐damaged plants of both genotypes at the two phenological stages and time periods (24–96 h) was similar qualitatively, with 30 identified compounds, but differed in the amount of volatiles produced. Additionally, boll weevil olfactory response was positive to herbivory‐induced volatiles. The results help to understand the interaction between A. grandis and cotton plants, and why it is difficult to obtain cotton genotypes possessing constitutive resistance to this pest.  相似文献   

7.
8.
Cotton plants (Gossypium hirsutum L.), attacked by herbivorous insects release volatile semiochemicals (chemical signals) that attract natural enemies of the herbivores to the damaged plants. We found chemical evidence that volatiles are released not only at the damaged site but from the entire cotton plant. The release of volatiles was detected from upper, undamaged leaves after 2 to 3 d of continuous larval damage on lower leaves of the same plant. Compounds released systemically were (Z)-3-hexenyl acetate, (E)-[beta]-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, (E)-[beta]-farnesene, (E,E)-[alpha]-farnesene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. All systemically released compounds are known to be induced by caterpillar damage and are not released in significant amounts by undamaged plants. Other compounds, specifically indole, isomeric hexenyl butyrates, and 2-methylbutyrates, known to be released by cotton in response to caterpillar damage, were not released systemically. However, when upper, undamaged leaves of a caterpillar-damaged plant were damaged with a razor blade, they released isomeric hexenyl butyrates, 2-methylbutyrates, and large amounts of constitutive compounds in addition to the previously detected induced compounds. Control plants, damaged with a razor blade in the same way, did not release isomeric hexenyl butyrates or 2-methylbutyrates and released significantly smaller amounts of constitutive compounds. Indole was not released systemically, even after artificial damage.  相似文献   

9.
To protect themselves from herbivory, plants have evolved an arsenal of physical and chemical defences and release a variety of volatile organic compounds (VOCs). By releasing these VOCs, a signalling plant can both reduce herbivory, sometimes by more than 90%, and also warn neighbouring plants about an attack. The aim of this study was to assess the influence of herbivory and insect extract application on VOC release by damaged/treated and nearby undamaged/untreated maize plants. We confirmed that European corn borer (Ostrinia nubilalis) larvae attack or larvae extract application induced maize VOC release. Greater amounts of (Z)‐3‐hexenal, (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (E)‐2‐hexen‐1‐ol, β‐myrcene, (Z)‐3‐hexen‐1‐yl acetate, 1‐hexyl acetate, (Z)‐ocimene, linalool, benzyl acetate, methyl salicylate, indole, methyl anthranilate, geranyl acetate, β‐caryophyllene, (E)‐β‐farnesene and (Z)‐3‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexen‐1‐yl acetate, (Z)‐ocimene, linalool, indole, methyl anthranilate, geranyl acetate, β‐caryophyllene and (E)‐β‐farnesene were released as a result of biotic stress after insect attack or insect extract application. The amounts of each VOC released were qualitatively and quantitatively distinct and dependent on time after biotic stress exposure. However, for all biotic stresses, significantly lower VOC induction was measured when leaves were damaged/treated for three days, as compared to seven days. Our work also demonstrated that undamaged/untreated neighbouring plants also release significant amounts of VOCs. This suggests that VOC emission by a damaged/treated plant stimulates VOC induction in nearby undamaged/untreated plants. However, the concentrations of all VOCs released by neighbouring undamaged/untreated maize plants were lower than those from damaged/treated plants and were negatively correlated with distance from a damaged/treated plant. Still, significant VOC induction occurred in undamaged/untreated plants even at 3 m distance from a damaged/infected plant. Our work suggests that maize plant protective defence responses (VOC emission) can be induced via application of European corn borer extracts.  相似文献   

10.
Plants respond to feeding by herbivorous insects by producing volatile organic chemicals, which mediate interactions between herbivores and plants. Yet, few studies investigated whether such plant responses to herbivory differ between historical host and novel plants. Here, we investigated whether herbivory by the pine weevil Hylobius abietis causes a release of volatile organic chemicals from a novel tree Pinus brutia and compared the relative amounts of volatiles released from herbivore's historical hosts and P. brutia. We collected volatiles emitted from P. brutia seedlings that were either subjected to feeding by H. abietis or no feeding. Our results indicated that feeding increased emission of volatile compounds, composed of monoterpenes and sesquiterpenes, and that the emission was several fold higher in the damaged seedlings than in undamaged seedlings. In particular, emission of monoterpenes and sesquiterpenes increased by 4.4‐and 10‐fold in the damaged plants, respectively. Strikingly, individual monoterpenes and sesquiterpenes showed much greater dissimilarity between damaged and undamaged seedlings. Furthermore, several minor monoterpenes showed negative relationships with the weevil gnawed area. We discussed these results with the results of previous studies focused on historical host plants of H. abietis and hypothesized the ecological relevance and importance of our results pertaining relevance to the plant–herbivory interactions.  相似文献   

11.
Extrafloral nectaries (EFNs) are nectar secretory structures involved in the indirect defense of plants. In the sponge gourd (Luffa cylindrica), EFNs commonly occur on the lower surface of leaf blades and stipules and remain functional until leaf senescence. To test the hypothesis that the development of EFNs is influenced by herbivore damage and resource availability, we grew Luffa cylindrica under different concentrations of Hoagland's nutrient solution (nutrient-poor conditions: 10%, 50%; and control condition: 100%) and two herbivory treatments (damaged and undamaged leaves). We collected ten leaves from treated plants to quantify leaf area and EFN density. Overall, leaf area increased and EFN decreased in damaged plants, but this significantly depended on nutritional status. In undamaged plants, EFN density tended to remain constant, whereas foliar area increased with nutrient input. Under herbivory, foliar area increased at 10% but decreased at 50 and 100% of nutrients in relation to undamaged plants, whereas EFN density tended to increase with nutrient availability to exceed undamaged plants under control concentrations. Plants under nutrient-poor conditions subjected to herbivory exhibited an increased foliar area, characterizing a compensatory mechanism. Our results suggest that herbivore-induced indirect defense is a damage- and resource-dependent response in Luffa cylindrica. These findings contribute to understanding the factors that modulate indirect defenses and plant-herbivore-environment interactions.  相似文献   

12.
The yellow stem borer, Scirpophaga incertulas Walker (YSB), infested rice plants emit chemicals through the surface of their infested stems. These induce attractant activity and cause arrestment responses and ovipositional stimulation in its egg parasitoid, Trichogramma japonicum Ashmead. Laboratory experiments on short‐range host searching and oviposition were performed to assess the how these crude stem extracts and their fractions influence the biological control efficiency of Trichogramma. The activity of these chemicals as long‐range attractants was confirmed through wind tunnel bioassays. Stem borer‐infested plant extracts had enhanced the parasitization rate of T. japonicum, whereas host eggs treated with the extract from undamaged stems or solvent‐treated control failed to evoke changes in the parasitoid’s behaviour. A preliminary GC‐MASS analysis indicated the presence of several hydrocarbon compounds. The analysis also revealed qualitative and quantitative differences between the chemical profiles of the infested and non‐infested plants. We hypothesized that herbivore‐induced plant chemicals are released through the stem surfaces and attract T. japonicum, even over long distances. These cues elicit parasitoid arrestment on pest‐damaged plants and subsequently lead to the successful parasitization of the stem borer.  相似文献   

13.
《Phytochemistry》1987,26(5):1357-1360
Cotton (Gossypium hirsutum) leaves were exposed for 7 days to volatile chemicals originating from Aspergillus flavus-infected cotton leaves, A. flavus cultures or mechanically damaged cotton leaves. Volatiles from A. flavus-infected leaves triggered significant increases of 52 and 34% in phloroglucinol-reactive compounds in wounded or undamaged cotton leaves, respectively. Increased production of heliocides (C25 terpenoid aldehydes) were found in the volatile recepient wounded or undamaged cotton leaves. The heliocides are natural insecticides presumed localized in the subepidermal pigment glands in leaves. Myrcene, a volatile precursor of heliocide H2, also caused significant increases in heliocide production when leaves were exposed to the volatilized chemical.  相似文献   

14.
Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 µg/g dry mass) followed by anabasine (4.9 µg/g) and nicotine (0.6 µg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory.  相似文献   

15.
Based on the model system of Brussels sprouts [Brassica oleracea var. gemmifera (Brassicaceae)], the herbivore cabbage white caterpillar, Pieris brassicae (L.) (Lepidoptera: Pieridae), and the parasitoid wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae), the influence of plant damage type, and damage duration were assessed on plant volatile emission and subsequent recruitment of natural antagonists of the herbivore. Plants were damaged by three methods for a period of either 3 or 8 h: herbivore damage (HD), progressive mechanical damage, and final mechanical damage inflicted in a single event. Wind‐tunnel bioassays evaluated whether the mode of damage affected female parasitoid oriented flight. After both periods of damage, all treatments were highly significantly preferred by naïve C. glomerata to undamaged control plants. After 3 h, herbivore‐damaged plants were significantly preferred to plants with final damage (FD). Most remarkably, following 8‐h damage, the parasitoid preferred both herbivore‐damaged and progressively damaged plants to plants with FD and did not significantly discriminate between herbivore and progressively damaged plants, thus indicating a similarity in plant response to herbivore and progressive mechanical damage. In addition to wind‐tunnel bioassays, emitted plant volatiles were collected and analysed by thermal desorption gas chromatography/mass spectrometry, following 3 and 8 h of damage in order to correlate volatiles released from different damage types with the attraction of the parasitoid. Differences in volatile profiles from all damage types were similar following both 3 and 8 h of damage, with only (Z)‐3‐hexenyl acetate found to be emitted in significantly higher quantities by final mechanical damage compared with HD after 3 h. In conclusion, the plant's response to progressive mechanical damage was more similar to HD than final mechanical damage deployed at a single point in time, irrespective of damage duration, and C. glomerata did not significantly discriminate between progressive damage and HD.  相似文献   

16.
It is important to determine the factors prompting seed dispersal because for plant species seed dispersal is the only opportunity to disperse into a new habitat. Previous studies showed that the maternal stress, such as high density and low nutrient levels, induces the adaptive plastic increase of the dispersal ability in seed heteromorphic plants. In this study, we examined whether herbivory can change the relative proportion of dispersal-related seed heteromorphism (floating or non floating seeds) in an invasive weed Ambrosia artemisiifolia. Because A. artemisiifolia often distributes in the riparian habitat, floating seeds might contribute to the long distance dispersal by hydrochory. Floating ability and seed weight were compared between plants damaged by a specialist herbivore Ophraella communa and undamaged plants. The damaged plants produced lighter and more likely floating seeds than the undamaged plants. However, multi-regression analysis revealed that the probability of floating was affected by seed weight but was not affected by herbivore treatment (damaged vs. undamaged plants). These results suggest that the increased proportion of floating seeds was not a direct response to the herbivore signal but an indirect response through the herbivore's effect on the reduction of seed weight. Plants damaged by herbivores might not only decrease seed production and quality but also increase the dispersal ability. These responses in dispersal ability against the herbivores might contribute to the spread of invasive plants.  相似文献   

17.
Gutbrodt B  Mody K  Wittwer R  Dorn S 《Planta》2011,233(6):1199-1207
Induction of plant resistance by herbivory is a complex process, which follows a temporal dynamic and varies spatially at the within-plant scale. This study aimed at improving the understanding of the induction process in terms of time scale and within-plant allocation, using apple tree seedlings (Malus × domestica) as plant model. Feeding preferences of a leaf-chewing insect (Spodoptera littoralis) for previously damaged and undamaged plants were assessed for six different time intervals with respect to the herbivore damage treatment and for three leaf positions. In addition, main secondary defense compounds were quantified and linked to herbivore feeding preferences. Significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Responses were delayed in the other leaf positions, and induced resistance decreased within 10 days after herbivore damage simultaneously in all tested leaf positions. Chemical analysis revealed higher concentrations of the flavonoid phloridzin in damaged plants as compared to undamaged plants. This indicates that herbivore preference for undamaged apple plants may be linked to phloridzin, which is the main secondary metabolite of apple leaves. The observed time course and distribution of resistance responses within plants contribute to the understanding of induction processes and patterns, and support the optimal defense theory stating young tissue to be prioritized. Moreover, induced resistance responses occurred also basipetally in leaves below the damage site, which suggests that signaling pathways involved in resistance responses are not unidirectional.  相似文献   

18.
1. Herbivory often induces systemic plant responses that affect the host choice of subsequent herbivores, either deterring or attracting them, with implications for the performance of both herbivore and host plant. Combining measures of herbivore movement and consumption can efficiently provide insights into the induced plant responses that are most important for determining choice behaviour. 2. The preferences of two frugivorous stink bug species, Nezara viridula and Euschistus servus between cotton plants left undamaged or damaged by Helicoverpa zea and Heliothis virescens larvae were investigated. A novel consumer movement model was used to investigate if attraction rates or leaving rates determined preferences. Stink bug consumption rates were measured using salivary sheath flanges. Finally, the systemic induction of selected phenolic‐based and terpenoid secondary metabolites were measured from heliothine herbivory on developing cotton bolls, to investigate if they explained stink bug feeding responses. 3. Heliothine herbivory did not affect the N. viridula feeding preference. However, we found opposing effects of H. zea and H. virescens herbivory on the behaviour of E. servus. Avoidance of H. zea‐damaged plants is not obviously related to phenolic or terpenoid induction in cotton bolls; whereas a preference for H. virescens‐damaged plants may be related to reductions in chlorogenic acid in boll carpel walls. 4. The present results highlight the inferential power of measuring both consumer movement and consumption in preference experiments and combining behavioural responses with phytochemical responses. Furthermore, while plant‐mediated interactions among herbivorous insects are well studied, interactions among frugivorous species specifically have been poorly documented.  相似文献   

19.
Plants infested with a single herbivore species can attract natural enemies through the emission of herbivore‐induced plant volatiles (HIPVs). However, under natural conditions plants are often attacked by more than one herbivore species. We investigated the olfactory response of a generalist predators Macrolophus caliginosus to pepper infested with two‐spotted spider mites, Tetranychus urticae, or green peach aphid, Myzus persicae, vs. plants infested with both herbivore species in a Y‐tube olfactometer set up. In addition, the constituents of volatile blends from plants exposed to multiple or single herbivory were identified by gas chromatography‐mass spectrometry (GC‐MS). The mirid bugs showed a stronger response to volatiles emitted from plants simultaneously infested with spider mites and aphids than to those emitted from plants infested by just one herbivore, irrespective of the species. Combined with results from previous studies under similar conditions we infer that this was a reaction to herbivore induced plant volatiles. The GC‐MS analysis showed that single herbivory induced the release of 22 additional compounds as compared with the volatiles emitted from clean plants. Quantitative analyses revealed that the amount of volatile blends emitted from pepper infested by both herbivores was significantly higher than that from pepper infested by a single herbivore. Moreover, two unique substances were tentatively identified (with a probability of 94% and 91%, respectively) in volatiles emitted by multiple herbivory damaged plants: α‐zingiberene and dodecyl acetate.  相似文献   

20.
It is well known that volatile cues from damaged plants may induce resistance in neighboring plants. Much less is known about the effects of volatile interaction between undamaged plants. In this study, barley plants, Hordeum vulgare cv. Kara, were exposed to volatiles from undamaged plants of barley cv. Alva or thistle Cirsium vulgare, and to the volatile phytochemicals, methyl salicylate or methyl jasmonate. Exposures were made either during natural daylight or darkness. Acceptance of exposed plants by the aphid Rhopalosiphum padi was assessed, as well as the expression of putative marker genes for the different treatments. Aphid acceptance of plants exposed to either barley or C. vulgare was significantly reduced, and an effect of the volatiles from undamaged plants was confirmed by the induction of pathogenesis-related protein, PR1a in exposed plants. However the effect on aphid acceptance was seen only when plants were exposed during darkness, whereas PR1a was induced only after treatment during daylight. Aphid acceptance of plants exposed to either methyl salicylate or methyl jasmonate was significantly reduced, but only when plants were exposed to the chemicals during daylight. AOS2 (allene oxide synthase) was induced by methyl jasmonate and BCI-4 (barley chemical inducible gene-4) by methyl salicylate in both daylight and darkness. It is concluded that (a) the effects on aphids of exposing barley to volatile phytochemicals was influenced by the presence or absence of light and (b) the response of barley to methyl salicylate/methyl jasmonate and to volatiles from undamaged plants differed at the gene and herbivore level.Key Words: methyl jasmonate, methyl salicylate, allelobiosis, barley, PR1, allene oxide synthase, Rhopalosiphum padi, light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号