首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of antibodies specific to meningococcal lipo-oligosaccharides (LOSs; outer-core-->inner-core-->lipid A) in sera of patients convalescent from meningococcal infection suggests the potential use of LOS as a vaccine to combat pathogenic Neisseria spp. Removal of the outer-core region, which expresses glycans homologous to human blood-group antigens, is a required first-step in order to avoid undesirable immunological reactions following vaccination. To this end, we describe here the structural makeup of the LOS produced by serogroup B N. meningitidis NMB isogenic phosphoglucomutase (Pgm) mutant (NMB-R6). The dominant LOS types produced by NMB-R6 expressed a deep-truncated inner-core region, GlcNAc-(1-->2)-LDHepII-(1-->3)-LDHepI-(1-->5)-[Kdo-2-->4]-Kdo-->lipid A, with one PEA unit attached at either O-6 or O-7 of LDHepII, or with two simultaneously PEA moieties attached at O-3 and O-6 or O-3 and O-7 of the same unit. Unexpectedly, this mutation did not completely deactivate the production of Glc, as some LOS molecules were observed to carry Glc at O-4 of LDHepI and at O-3 of LDHepII. A glycoconjugate vaccine comprised of NMB-R6 LOSs is currently being evaluated in our laboratory.  相似文献   

2.
The inner core structures of the lipooligosaccharides (LOS) of Neisseria meningitidis are potential vaccine candidates because both bactericidal and opsonic antibodies can be generated against these epitopes. In an effort to better understand LOS biosynthesis and the potential immunogenicity of the LOS inner core, we have determined the LOS structure from a meningococcal rfaK mutant CMK1. The rfaK gene encodes the transferase that adds an alpha-N-acetylglucosaminosyl residue to O-2 of the inner core heptose (Hep) II of the LOS. The LOS oligosaccharide from this mutant was previously shown to contain only Hep, 3-deoxy-D-manno-2-octulosonic acid (Kdo), and multiple phosphoethanolamine (PEA) substituents (Kahler et al., 1996a, J. Bacteriol., 178, 1265-1273). The complete structure of the oligosaccharide (OS) component of the LOS from mutant CMK1 was determined using glycosyl composition and linkage analyses, and 1H, 13C, and 31P nuclear magnetic resonance spectroscopy. The CMK1 OS structure contains a PEA group at O-3 of Hep II in place of the usual glucosyl residue found at this position in the completed L2 LOS glycoform from the parent NMB strain. The PEA group at O-6 of Hep II, however, is present in both the CMK1 mutant LOS and parental NMB L2 LOS structures. The structure of the OS from CMK1 suggests that PEA substituents are transferred to both the O-3 and O-6 positions of Hep II prior to: (1) the incorporation of the alpha-GlcNAc on Hep II; (2) the synthesis of the alpha-chain on Hep I; and (3) the substitution of the glycosyl residue at the O-3 Hep II, which distinguishes L2 and L3 immunotypes. The LOS structure of the CMK1 mutant makes it a candidate immunogen that could generate broadly cross-reactive inner-core LOS antibodies.  相似文献   

3.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

4.
Jia Z  Cash M  Darvill AG  York WS 《Carbohydrate research》2005,340(11):1818-1825
Eight oligosaccharide subunits, generated by endoglucanase treatment of the plant polysaccharide xyloglucan isolated from the culture filtrate of suspension-cultured tomato (Lycopersicon esculentum) cells, were structurally characterized by NMR spectroscopy. These oligosaccharides, which contain up to three endogenous O-acetyl substituents, consist of a cellotetraose core with alpha-D-Xylp residues at O-6 of the two beta-D-Glcp residues at the non-reducing end of the core. Some of the alpha-D-Xylp residues themselves bear either an alpha-L-Arap or a beta-D-Galp residue at O-2. O-Acetyl substituents are located at O-6 of the unbranched (internal) beta-D-Glcp residue, O-6 of the terminal beta-D-Galp residue, and/or at O-5 of the terminal alpha-L-Arap residue. Structural assignments were facilitated by long-range scalar coupling interactions observed in the high-resolution gCOSY spectra of the oligosaccharides. The presence of five-bond scalar coupling constants in the gCOSY spectra provides a direct method of assigning O-acetylation sites, which may prove generally useful in the analysis of O-acylated glycans. Spectral assignment of these endogenously O-acetylated oligosaccharides makes it possible to deduce correlations between their structural features and the chemical shifts of diagnostic resonances in their NMR spectra.  相似文献   

5.
6.
The structure for the carbohydrate moiety of the lipooligosaccharide (LOS) from the commensal Haemophilus somnus strain 129Pt was elucidated. The structure of the core oligosaccharide and O-deacylated LOS was established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the major fully extended carbohydrate glycoform of the LOS was determined on the basis of the combined data from these experiments. [Carbohydrate structure: see text]. In the structure Kdo is 3-deoxy-D-manno-octulosonic acid, Hep is L-glycero-D-manno-heptose and PEtn is phosphoethanolamine. Minor amounts of glycoforms containing nonstoichiometric substituents glycine and phosphate at the distal heptose residue were also identified.  相似文献   

7.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   

8.
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design.  相似文献   

9.
Previous structural studies in our laboratory on lipooligosaccharide (LOS) inner core oligosaccharide (OS) had identified structures from several strains of Histophilus (Haemophilus) somni (738, 2336, 1P, 129Pt). Recently a type strain 8025 was proposed for this species and we therefore sought to determine the core OS structure of this H. somni strain. Core OS was isolated by standard methods from Westphal purified LOS. Structural information was established by a combination of monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the core OS was determined on the basis of the combined data from these experiments: [carbohydrates: see text]. The structure determined contains aspects of other Histophilus somni core OS structures, such as the beta-Gal attached at the 2-position of Hep II (2336), PEtn only at the 6-position of Hep II (738, 129Pt) and a lactose extension from Hep I (1P). Since genetic manipulation has been achieved with this strain, the identification of the core OS structure will enable experiments designed to identify the role of glycosyltransferases involved in LOS biosynthesis.  相似文献   

10.
Cell walls of each of five bacterial strains belonging to the genus Kribbella (family Nocardioidaceae, order Actinomycetales) contain a neutral polysaccharide (mannan) and teichulosonic acid of novel structure in different proportions. The novel teichulosonic acid found in strains VKM Ac-2500, VKM Ас-2568, VKM Ас-2572, and VKM Ас-2575 is a heteropolymer with an irregular structure where fragments I (predominant) alternate with fragments II (minor):The teichulosonic acid from Kribbella sp. VKM Ac-2527 has in general a structure similar to that above with the exception that the Pse residue is randomly glycosylated at O-4 with β-l-Rhap (along with α-d-Galp3OMe or α-d-Galp2,3OMe). The strain VKM Ac-2572 contained additionally teichuronic acid with the disaccharide repeating unit consisted of aminomannuronic acid and 2,3-diacetamido-2,3-dideoxy-α-glucopyranose. The mannan, a polysaccharide common to all of the strains, is built of (1→6)-linked α-d-mannopyranose substituted with α-d-mannopyranose at O-2. The structures of all the glycopolymers were established by a combination of chemical and NMR spectroscopic methods.  相似文献   

11.
12.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

13.
The lipopolysaccharide of Pseudomonas aeruginosa O-12 was studied by strong alkaline and mild acid degradations and dephosphorylation followed by fractionation of the products by GPC and high-performance anion-exchange chromatography and analyses by ESI FT-MS and NMR spectroscopy. The structures of the lipopolysaccharide core and the O-polysaccharide repeating unit were elucidated and the site and the configuration of the linkage between the O-polysaccharide and the core established. The core was found to be randomly O-acetylated, most O-acetyl groups being located on the terminal rhamnose residue of the outer core region.  相似文献   

14.
The structure of the O-antigen polysaccharides (PS) from the enteroaggregative Escherichia coli strain 94/D4 and the international type strain E. coli O82 have been determined. Component analysis and 1H, 13C, and 31P NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by 1H, 13C-heteronuclear multiple-bond correlation, and 1H, 1H-NOESY experiments. d-GroA as a substituent is linked via its O-2 in a phosphodiester-linkage to O-6 of the α-d-Glcp residue. The PS is composed of tetrasaccharide repeating units with the following structure:→4)-α-d-Glcp6-(P-2-d-GroA)-(1→4)-β-d-Galp-(1→4)-β-d-Glcp-(1→3)-β-d-GlcpNAc-(1→Cross-peaks of low intensity from an α-d-Glcp residue were present in the NMR spectra and spectral analysis indicates that they originate from the terminal residue of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-glucosamine residue at its reducing end. Enzyme immunoassay using specific anti-E. coli O82 rabbit sera showed identical reactivity to the LPS of the two strains, in agreement with the structural analysis of their O-antigen polysaccharides.  相似文献   

15.
The structure of the lipid A and core region of the lipopolysaccharide (LPS) from Francisella tularensis (ATCC 29684) was analysed using NMR, mass spectrometry and chemical methods. The LPS contains a beta-GlcN-(1-6)-GlcN lipid A backbone, but has a number of unusual structural features; it apparently has no substituent at O-1 of the reducing end GlcN residue in the lipid part in the major part of the population, no substituents at O-3 and O-4 of beta-GlcN, and no substituent at O-4 of the Kdo residue. The largest oligosaccharide, isolated after strong alkaline deacylation of NaBH4 reduced LPS had the following structure: where Delta-GalNA-(1-3)-beta-QuiNAc represents a modified fragment of the O-chain repeating unit. Two shorter oligosaccharides lacking the O-chain fragment were also identified. A minor amount of the disaccharide beta-GlcN-(1-6)-alpha-GlcN-1-P was isolated from the same reaction mixture, indicating the presence of free lipid A, unsubstituted by Kdo and with phosphate at the reducing end. The lipid A, isolated from the products of mild acid hydrolysis, had the structure 2-N-(3-O-acyl4-acyl2)-beta-GlcN-(1-6)-2-N-acyl1-3-O-acyl3-GlcN where acyl1, acyl2 and acyl3 are 3-hydroxyhexadecanoic or 3-hydroxyoctadecanoic acids, acyl4 is tetradecanoic or (minor) hexadecanoic acids. No phosphate substituents were found in this compound. OH-1 of the reducing end glucosamine, and OH-3 and OH-4 of the nonreducing end glucosamine residues were not substituted. LPS of F. tularensis exhibits unusual biological properties, including low endoxicity, which may be related to its unusual lipid A structure.  相似文献   

16.
The structure of the antigenic O-polysaccharide (O-PS) of the lipopolysaccharide (LPS) produced by the enterohemorrhagic strain of Escherichia coli O48:H21 (EHEC) has been elucidated. The O-PS obtained by mild acid hydrolysis of the LPS had [alpha]D +95 (water) and was composed of L-rhamnose (L-Rha), D-galactose (D-Gal), 2-amino-2-deoxy-D-glucose (D-GlcN), 2-amino-2-deoxy-D-galactose (D-GalN), and D-galacturonic acid (D-GalA) (1:1:1:1:1). From the results of methylation analysis, mass spectrometry, 2D NMR, and DOC-PAGE, the O-PS was shown to be a high molecular mass polymer of a repeating pentasaccharide unit having the structure: [structure: see text]. The D-Gal pA non-reducing end groups in the O-PS were partially O-acetylated (approximately 30%) at the O-2 and O-3 positions and the degree of acetylation was variable from batch to batch cell production.  相似文献   

17.
Shigella flexneri is a gram-negative bacterium responsible for serious enteric infections that occur mainly in the terminal ileum and colon. High interest in Shigella, as a human pathogen, is driven by its antibiotic resistance and the necessity to develop a vaccine against its infections. Vaccines of the last generation use carbohydrate moieties of the lipopolysaccharide as probable candidates. For this reason, the primary structure of the core oligosaccharide from the R-LPS produced by S. flexneri M90T serotype 5 using chemical analysis, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MALDI), is herein reported. This is the first time that the core oligosaccharide primary structure by S. flexneri M90T is established in an unambiguous multidisciplinary approach. Chemical and spectroscopical investigation of the de-acetylated LPS showed that the inner core structure is characterized by a L,D-Hep-(1 -->7)-L,D-Hep-(1 -->3)-L,D-Hep-(1 -->5)-[Kdo-(2 -->4)]-Kdo sequence that is the common structural theme identified in Enterobacteriaceae. In particular, in S. flexneri M90T serotype 5 LPS, a glucosamine residue is additionally sitting at O-7 of the last heptose whereas the outer core is characterized by glucose and galactose residues. Also, in order to exactly define the position of glycine that is an integral constituent of the core region of the LPS, we created a S. flexneri M90T delta galU mutant and studied its LOS. In this way it was possible to establish that glycine is sitting at O-6 of the second heptose in the inner core.  相似文献   

18.
The main acidic polysaccharides from the red seaweed Jania rubens share the general characteristics of corallinans (agar-like xylogalactans). After fractionation by ion-exchange chromatography, ten fractions were separated and characterized by sugar composition, other components, methylation, ethylation, desulfation-methylation, and NMR analyses. The main group of fractions carry the agaran disaccharidic repeating unit [-->3)-beta-d-Gal-(1-->4)-alpha-l-Gal-(1-->] substituted mainly on O-6 of the beta-d-Gal unit by beta-xylosyl side stubs, and less with sulfate or methoxyl groups, and also on O-2 of the alpha-l-Gal unit with methoxyl or sulfate, or less on O-3 of the same unit with methoxyl groups. These features are somehow common to the four members of the order already studied. However, a sugar uncommon to the order appears in moderate proportions for all the fractions: it is 3,6-anhydro-l-galactose (partly sulfated or methoxylated on O-2) replacing the l-Gal unit. Besides, several other structural features never found in the order (and uncommon in any polysaccharide) appear in some minor fractions: the presence of side stubs of 2,3-di- and 3-O-methyl-d-galactose, and also part of the 3-O-methyl-l-galactose acting as side stubs. These results show that, although the main features of the corallinean xylogalactans are common to all the species studied, each one has minor characteristics of its own.  相似文献   

19.
A phosphorylated core-lipid A backbone oligosaccharide that carries a disaccharide remainder of the first O-antigen repeating unit was derived by strong alkaline degradation following mild hydrazinolysis of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 4 (serogroup O-1). The structure of the oligosaccharide was determined using ESI MS and NMR spectroscopy and it was demonstrated that 2-acetamido-2,6-dideoxy-D-glucose is the first monosaccharide of the O-polysaccharide that is linked to the LPS core. These data define the structure of the biological repeating unit of the O-antigen.  相似文献   

20.
Serological tests revealed immunochemical similarities between the lipopolysaccharides of Hafnia alvei strains PCM 1200, 1203 and 1205. Immunoblotting and ELISA showed cross-reactions between the strains. NMR spectroscopy showed that the O-deacetylated O-specific polysaccharides isolated from lipopolysaccharides of H. alvei strains PCM 1200 and 1203 possessed the same composition and sequence as the O-deacetylated O-specific polysaccharide of H. alvei strain PCM 1205, that is a glycerol teichoic-acid-like polymer with a repeating unit of the following structure: [carbohydrate structure: see text] NMR spectroscopic studies of the polysaccharides concluded that O-3 of the side chain beta-D-GlcpNAc is partially O-acetylated (50-80%) in both investigated strains. In strain PCM 1203 an additional O-acetyl group (50-80%) is linked to O-6 of the chain -->3)-alpha-D-GlcpNAc-(1--> residue. The structural features of the isolated O-specific polysaccharides were also the same as those of the O-specific polysaccharides on the bacterial cells directly observed by the HR-MAS NMR technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号