首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

2.
The formation of neodymium hexacyanoferrate (NdHCF) nanoparticles (NPs) on the surface of glucose oxidase/chitosan (GOx/CHIT) modified glass carbon electrode induced by enzymatic reaction was described and characterized. CHIT can be used not only as enzyme immobilizer, but also to provide active sites for NPs growth. Results showed that the optimized conditions of the GOx/CHIT film induced NdHCF NPs for the biosensing of glucose were 1.0mM Nd(3+) and 20.0mM Fe(CN)(6)(3-). The biocatalyzed generation of NdHCF NPs enabled the development of an electrochemical biosensor for glucose. The calculated apparent Michaelis-Menten constant was 7.5mM. The linear range for glucose detection was 0.01-10.0mM with the correlation coefficient of 0.9946, and the detection limit was 5muM (S/N=3). Furthermore, this system avoids the interferences of other species during the biosensing process and can be used for the determination of glucose in human plasma samples.  相似文献   

3.
Pan D  Chen J  Nie L  Tao W  Yao S 《Analytical biochemistry》2004,324(1):115-122
Prussian blue (PB), as a good catalyst for the reduction of hydrogen peroxide, has been combined with nonconducting poly(o-aminophenol) (POAP) film to assemble glucose biosensor. Compared with PB-modified enzymatic biosensor, the biosensor based on glucose oxidase immobilized in POAP film at PB-modified electrode shows much improved stability (78% remains after 30 days) in neutral medium. Additionally, the biosensor, at an applied potential of 0.0 V, exhibits other good characteristics, such as relative low detection limit (0.01 mM), short response time (within 5s), large current density (0.28 mA/cm2), high sensitivity (24 mAM(-1)cm(-2)), and good antiinterferent ability. The apparent activation energy of enzyme-catalyzed reaction and apparent Michaelis-Menten constant are 34.2 KJmol(-1) and 10.5 mM, respectively. In addition, effects of temperature, applied potential used in the determination, pH value of the detection solution, and electroactive interferents on the amperometric response of the sensor were investigated and are discussed.  相似文献   

4.
Yin B  Yuan R  Chai Y  Chen S  Cao S  Xu Y  Fu P 《Biotechnology letters》2008,30(2):317-322
A glucose biosensor based on layer-by-layer (LBL) self-assembling of chitosan and glucose oxidase (GOD) on a Prussian blue film was developed. First, Prussian blue was deposited on a cleaned gold electrode then chitosan and GOD were assembled alternately to construct a multilayer film. The resulting amperometric glucose biosensor exhibited a fast response time (within 10 s) and a linear calibration range from 6 μM to 1.6 mM with a detection limit of 3.1 μM glucose (s/n = 3). With the low operating potential, the biosensor showed little interference to the possible interferents, including ascorbic acid, acetaminophen and uric acid, indicating an excellent selectivity.  相似文献   

5.
Zhao ZX  Qiao MQ  Yin F  Shao B  Wu BY  Wang YY  Wang XS  Qin X  Li S  Yu L  Chen Q 《Biosensors & bioelectronics》2007,22(12):3021-3027
Hydrophobins are a family of natural self-assembling proteins with high biocompability, which are apt to form strong and ordered assembly onto many kinds of surfaces. These physical-chemical and biological properties make hydrophobins suitable for surface modification and biomolecule immobilization purposes. A class II hydrophobin HFBI was used as enzyme immobilization matrix on platinum electrode to construct amperometric glucose biosensor. Permeability of HFBI self-assembling film was optimized by selecting the proper HFBI concentration for electrode modification, in order to allow H2O2 permeating while prevent interfering compounds accessing. HFBI self-assembly and glucose oxidase (GOx) immobilization was monitored by quartz crystal microbalance (QCM), and characterization of the modified electrode surface was obtained by scanning electron microscope (SEM). The resulting glucose biosensors showed rapid response time within 6 s, limits of detection of 0.09 mM glucose (signal-to-noise ratio = 3), wide linear range from 0.5 to 20 mM, high sensitivity of 4.214 × 10−3 A M−1 cm−2, also well selectivity, reproducibility and lifetime. The all-protein modified biosensor exhibited especially high efficiency of enzyme utilization, producing at most 712 μA responsive current for per unit activity of GOx. This work provided a promising new immobilization matrix with high biocompatibility and adequate electroactivity for further research in biosensing and other surface functionalizing.  相似文献   

6.
Mediated biosensors consisting of an oxidase and peroxidase (POx) have attracted increasing attention because of their wider applicability. This work presents a novel approach to fabricate nanobiocomposite bienzymatic biosensor based on functionalized multiwalled carbon nanotubes (MWNTs) with the aim of evaluating their ability as sensing elements in amperometric transducers. Electrochemical behavior of the bienzymatic nanobiocomposite biosensor is investigated by Faradaic impedance spectroscopy and cyclic voltammetry. The results indicate that glucose oxidase (GOD) and horseradish peroxidase (HRP) are strongly adsorbed on the surface of the thionin (TH) functionalized MWNTs and demonstrate a facile electron transfer between immobilized GOD/HRP and the electrode via the functionalized MWNTs in a Nafion film. The functionalized carbon nanotubes act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centres of enzymes through TH. Linear ranges for these electrodes are from 10 nM to 10 mM for glucose and 17 nM to 56 mM for hydrogen peroxide with the detection limit of 3 and 6 nM, respectively. A remarkable feature of the bienzyme electrode is the possibility to determine glucose and hydrogen peroxide at a very low applied potential where the noise level and interferences from other electroactive compounds are minimal. Performance of the biosensor is evaluated with respect to response time, detection limit, selectivity, temperature and pH as well as operating and storage stability.  相似文献   

7.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

8.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

9.
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.  相似文献   

10.
Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor with both amperometry and FTIR spectroscopy. The results showed that the biosensor responses sensitively and selectively to glucose with a considerable functional lifetime of over 80 days. The fabricated enzymatic sensor detects glucose with a dynamic linear range of over 9 mM and a detection limit of 0.01 mM. To examine the efficiency of enzyme immobilization, the Michaelis–Menten constant was calculated to be 4.67 mM. In addition, the fabricated electrochemical biosensor shows high selectivity; no amperometric response to the common interference species such as ascorbic acid, uric acid and acetamidophenol was observed. The facile and robust buckypaper-based platform proposed in this study opens the door for the design of high-performance electrochemical biosensors for medical diagnostics and environmental monitoring.  相似文献   

11.
Two classes of polymers that are currently receiving widespread attention in biosensor development are hydrogels and conducting electroactive polymers. The present study reports on the integration of these two materials to produce electroactive hydrogel composites that physically entrap enzymes within their matrices for biosensor construction and chemically stimulated controlled release. Enhanced biosensing capabilities of these membranes have been demonstrated in the fabrication of glucose, cholesterol and galactose amperometric biosensors. All biosensors displayed extended linear response ranges (10(-5)-10(-2) M), rapid response times (<60 s), retained storage stabilities of up to 1 year, and excellent screening of the physiological interferents ascorbic acid, uric acid, and acetaminophen. When the cross-linked hydrogel components of these composite membranes were prepared with the amine containing dimethylaminoethyl methacrylate monomer the result was polymeric devices that swelled in response to pH changes (neutral to acidic). Entrapment of glucose oxidase within these materials made them glucose-responsive through the formation of gluconic acid. When insulin was co-loaded with glucose oxidase into these "bio-smart" devices, there was a twofold increase in insulin release rate when the devices were immersed in glucose solutions. This demonstrates the potential of such systems to function as a chemically-synthesized artificial pancreas.  相似文献   

12.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

13.
A novel glucose biosensor was developed based on the adsorption of glucose oxidase at a TiO(2)-Graphene (GR) nanocomposite electrode. A TiO(2)-GR composite was synthesized from a colloidal mixture of TiO(2) nanparticles and graphene oxide (GO) nanosheets by an aerosol assisted self-assembly (AASA). The particle morphology of all TiO(2)-GR composites was spherical in shape. It was observed that micron-sized TiO(2) particles were encapsulated by GR nanosheets and that the degree of encapsulation was proportional to the ratio of GO/TiO(2). The amperometric response of the glucose biosensor fabricated by the TiO(2)-GR composite was linear against a concentration of glucose ranging from 0 to 8mM at -0.6V. The highest sensitivity was noted at about 6.2μA/mMcm(2). The as prepared glucose biosensor based on the TiO(2)-GR composite showed higher catalytic performance for glucose redox than a pure TiO(2) and GR biosensor.  相似文献   

14.
The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5–5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose.  相似文献   

15.
One-step construction of Pt nanoparticles-chitosan composite film (PtNPs-CS) was firstly proposed as a novel immobilization matrix for the enzymes to fabricate glucose biosensor. This novel interface embedded in situ PtNPs in CS hydrogel was developed by one-step electrochemical deposition in solution containing CS and chloroplatinic acid (H(2)PtCl(6)). Several techniques, including scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry were employed to characterize the assembly process and performance of the biosensor. Under the optimized experimental conditions, the resulting biosensor exhibited excellent linear behavior in the concentration range from 1.2 μM to 4.0 mM for the quantitative analysis of glucose with a limit of detection of 0.4 μM at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant (K(M)(app)) was evaluated to be 2.4 mM, showing good affinity. The proposed biosensor offered good amperometric responses to glucose due to the nanostructured sensing film provided plenty of active sites for the immobilization of glucose oxidase (GOD).  相似文献   

16.
The graphene nanosheets and carbon nanospheres mixture (GNS–CNS) was prepared by electrolyzing graphite rob in KNO3 solution under constant current, which was characterized by TEM, AFM, SEM, FT-IR, XRD, XPS, TGA and UV–vis. The nano-mixture can keep stable in water for more than one month. Based on this kind of mixture material, a novel electrochemical biosensing platform for glucose determination was developed. Cyclic voltammetry of glucose oxidase (GOD) immobilized on GNS–CNS/GCE exhibited a pair of well-defined quasi-reversible redox peaks at −0.488 V (Epa) and −0.509 V (Epc) by direct electron transfer between the protein and the electrode. The charge-transfer coefficient (α) was 0.51, the electron transfer rate constant was 2.64 s−1 and the surface coverage of HRP was 3.18 × 10−10 mol cm−2. The immobilized GOD could retain its bioactivity and catalyze the reduction of dissolved oxygen. The glucose biosensor has a linear range from 0.4 to 20 mM with detection limit of 0.1 mM. Moreover, the biosensor exhibits acceptable reproducibility and storage stability. The fabricated biosensor was further used to determine glucose in human plasma sample with the recoveries from 96.83% to 105.52%. Therefore, GOD/GNS–CNS/GCE could be promisingly applied to determine blood sugar concentration in the practical clinical analysis.  相似文献   

17.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

18.
Cobalt hexacyanoferrate nanoparticles (CoNP) can be easily prepared by mixing hexacyanoferrate and cobalt chloride solution at room temperature. The nanoparticles were solubilized in aqueous solution of a biopolymer chitosan (CHIT). With the introduction of carbon nanotubes (CNT), the CoNP-CNT-CHIT system formed shows synergy between CNT and CoNP with the significant improvement of redox activity of CoNP due to the excellent electron-transfer ability of CNT. The CoNP-CNT-CHIT film modified glassy carbon electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. In particular, with the introduction of CNT, it amplified the H2O2 sensitivity by approximately 70 times compared to film of CoNP-CHIT. With the immobilization of glucose oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to glucose has been constructed. In pH 6.98 phosphate buffer, interference free determination of glucose has been realized at -0.2V versus saturated calomel electrode (SCE) with a linear range from 0.01 to 10 mM and response time<10s. The detection limit was 5 microM glucose (S/N=3).  相似文献   

19.
We report on the utilization of a novel nanoscaled cobalt phthalocyanine (NanoCoPc)-glucose oxidase (GOD) biocomposite colloid to create a highly responsive glucose biosensor. The biocomposite colloid is constructed under enzyme-friendly conditions by adsorbing GOD molecules on CoPc nanoparticles via electrostatic interactions. The glucose biosensor can be easily achieved by casting the biocomposite colloid on a pyrolytic graphite electrode (PGE) without any auxiliary matter. It has been found that GOD can be firmly immobilized on PGE surface and maintain its bioactivity after conjugating with NanoCoPc. NanoCoPc displays intrinsic electrocatalytic ability to the oxidation of the product of enzymatic reaction H2O2 and shows a higher catalytic activity than that of bulk CoPc. Under optimal conditions, the biosensor shows a wide linear response to glucose in the range of 0.02-18 mM, with a fast response (5s), high sensitivity (7.71 microA cm(-2) mM(-1)), as well as good thermostability and long-term life. The detection limit was 5 microM at 3 sigma. The general interferences coexisted in blood except ascorbic acid and L-cysteine do not affect glucose determination, and further coating Nafion film on the surface of the biosensor can effectively eliminate the interference from ascorbic acid and L-cysteine. The biosensor with Nafion film has been used for the determination of glucose in serum with an acceptable accuracy.  相似文献   

20.
By a dealloying/annealing/redealloying strategy, nanoporous gold (NPG) with hierarchical microstructure is fabricated for electrochemical biosensing application. The first dealloying and annealing would produce NPG/AuAg alloy composite with a large-pore NPG layer and the second dealloying would further etch the AuAg alloy part in the composite, generating a small-pore NPG layer. By using the large-pore (≈ 100 nm) layer as the glucose oxidase (GOx) container, and the small-pore (≈ 12 nm) layer as a signal producer, this novel hierarchical NPG is demonstrated to be a good support for enzyme immobilization and fabricating enzyme-based biosensors. The immobilized GOx retains ≈ 92% of the initial activity after 7 repeated use. The GOx-loaded stratified NPG biosensor can detect glucose more sensitively with a wider linear range (up to 22 mM) than normal NPG with a uniform pore size of 30-40 nm (linear range: up to 17 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号