首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

2.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

3.
Nicotinamide deamidase (YNDase) has been purified from yeast through the use of a six-step procedure that includes molecular-sieve high performance liquid chromatography. The final preparation was homogeneous by the criteria of sodium dodecyl sulfate-gel electrophoresis, and the enzyme specific activity was determined to be 175 mumol of nicotinate formed per min/mg enzyme. Gel electrophoresis and molecular-sieve high performance liquid chromatography were employed also to characterize YNDase as a monomeric protein with a molecular weight of 34,000. A Km value for nicotinamide of 33 microM was determined for the deamidase activity at pH 6, and a pH range for optimal stability of 6-8.5 was established for this enzyme. The YNDase activity was also examined over a pH range at several substrate concentrations and both the log Vmax and log Vmax/Km plots versus pH suggested that a protonated amino acid residue with an apparent pKb value of 7.8 was essential to this activity. During an in vitro assay of the YNDase-catalyzed formation of nicotinate, ammonia was generated and detected chemically. Inhibition of the YNDase activity by nicotinaldehyde suggested the presence of either an essential lysine (Schiff's base formation) or cysteine residue (thiohemiacetal intermediate) at the YNDase active site. The relatively large value of the nicotinaldehyde inhibition constant (Ki = 68 microM), the observation that this analogue is a noncompetitive inhibitor of nicotinate formation, and the fact that this inhibition can be rendered irreversible through incubation with sodium borohydride, indicates that a Schiff's base intermediate is more likely to occur upon incubation of YNDase with nicotinaldehyde. However, YNDase is inactivated completely and irreversibly by N-ethylmaleimide at pH 6, and the enzyme is protected against this modification by either nicotinamide or nicotinate. These results suggest that both nicotinate and nicotinamide bind to YNDase, even though the enzymatic reaction is essentially irreversible, and that a cysteine residue may be present at the YNDase active site.  相似文献   

4.
A method of isolation and purification of lipase (EC 3.1.1.3) from the germ of wheat (Triticum aestivum) is described. Electrophoretically homogeneous preparation of the enzyme (specific activity, 622.5 x x 10(-3) mumol/min per mg protein) was obtained after purification in 61 times. The molecular weight of the enzyme, determined by gel chromatography, was 143 +/- 2 kDa. The optimal conditions for the enzyme were 37 degrees and pH 8.0. Homogeneous preparation of the lipase exhibited high thermal stability: over 20% of original activity was retained after incubation of the preparation at high temperatures (60-90 degrees) for 1 h at pH 8.0.  相似文献   

5.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

6.
1. Phosphoenolpyruvate carboxykinase was partially purified from camel liver and kidney by ammonium sulphate fractionation, gel filtration and ion-exchange chromatography. 2. The specific activity of the purified preparation from liver was 39.2 mumol/min per mg protein. 3. When isolated from the kidney the specific activity of the enzyme was very much higher 155.5 mumol/min per mg protein. 4. The enzyme from the two sources were similar in their pH optimum which was approx. 7.2 and their relative stability to thermal inactivation at 60 degrees C. 5. The mol. wt of the enzyme from both organs was estimated at 80,000 +/- 5000.  相似文献   

7.
Thermomonospora fusca produced a relatively high level of alpha-L-arabinofuranosidase when growing on oat spelt xylan as the main carbon and energy source. The enzyme exhibited maximum relative activity (0.136 U/g protein) at pH 9.0 with 54 and 55% activity remaining at pH of 4.5 and 11.0, respectively. The apparent Km value for the crude alpha-L-arabinofuranosidase preparation was 180 mumol/L 4-nitrophenyl alpha-L-arabinofuranoside; the upsilon lim value was the release of 40 mumol/L 4-nitrophenol per min. Enzyme activity was eluted as a single peak (HPLC gel filtration chromatography) corresponding to molar mass of approximately 92 kDa. Native electrophoresis of crude cell lysate confirmed the presence of a single active intracellular alpha-L-arabinofuranosidase component. SDS-PAGE of this enzyme, developed as zymogram, did not demonstrate any activity; denaturing gel was stained and a protein band of relative molar mass of 46 kDa was revealed. Isoelectric focusing of a purified alpha-L-arabinofuranosidase yielded a single protein band for the corresponding activity zone with pI 7.9. The enzyme was purified approximately 21-fold the mean overall yield was about 16%.  相似文献   

8.
A phosphatase that dephosphorylates myosin and the isolated light chain has been purified to near homogeneity from chicken gizzard smooth muscle. The molecular weight of the enzyme was estimated to be 100,000 and 35,000 under native and denatured conditions, respectively. It requires Mg2+ or Mn2+. The activity was measured quantitatively with a coupled enzyme system with the aid of myosin light chain kinase. The Vm and Km were determined to be 23.4 mumol/mg/min and 4.2 microM, respectively, with the isolated light chain as substrate under the optimal conditions (5 mM Mg2+ at pH 8.45). The specific activity with myosin as substrate at a concentration of 0.9 microM was found to be 1.25 mumol/mg/min, which was about one-fifth of the activity for the isolated light chain under the same conditions. The phosphatase seems to be specific to gizzard myosin. It may play an important role in the regulation of the myosin-actin interaction in smooth muscle.  相似文献   

9.
Phosphatidylinositol 4-kinase has been purified 10,148-fold to a specific activity of 2.7 mumol/mg/min from bovine uteri. This purification was accomplished by detergent extraction of an acetone powder, ammonium sulfate precipitation, and chromatography on MonoQ, S-Sepharose, MonoP, and hydroxylapatite columns. The purified enzyme has a molecular mass of 55 kDa and appears to be monomeric. Kinetic analyses of the enzymatic activity demonstrated apparent Km values of 18 microM and 22 micrograms/ml (approximately 26 microM) for ATP and phosphatidylinositol, respectively, optimal activity in the pH range of 6.0-7.0, and a sigmoidal dependence of enzymatic activity on [Mg2+]. Ca2+ inhibited the enzyme at nonphysiological concentrations with 50% inhibition observed at a free [Ca2+] of approximately 300 microM. The purified enzyme efficiently utilized both ATP and 2'-deoxy-ATP as phosphoryl donors and specifically phosphorylated phosphatidylinositol on the fourth position. No phosphatidylinositol-4-phosphate 5-kinase activity was observed in the purified enzyme preparations. To our knowledge, this is the first reported purification of a phosphatidylinositol-specific phosphatidylinositol 4-kinase.  相似文献   

10.
An enzyme with sulfatase activity has been isolated from the granules of a rat NK leukemia cell line, CRNK-16. The enzyme has been purified from crude preparation, with a specific activity of 52 nmol/min/mg of protein, by DEAE ion exchange and Con A-Sepharose affinity chromatography, resulting in a specific activity of 230 nmol/min/mg of protein. The molecular mass of the purified enzyme was estimated to be 40 kDa by gel filtration chromatography at pH 7.4, but the enzyme had the ability to complex to molecular masses of greater than 300 kDa at low pH when crude granule extract was used as the starting sample, suggesting that it associates with other granule components. The enzyme was determined to be an arylsulfatase by its ability to (a) hydrolyze p-nitrophenyl sulfate (Km = 26.0 mM) and p-nitrocatechol sulfate (pNC sulfate) (Km = 1.1 mM) and (b) be inhibited by sulfite (Ki = 6.0 x 10(-7) M), sulfate (Ki = 1 x 10(-3) M), and phosphate (Ki = 4 x 10(-5) M) in a competitive manner. The pH optimum for enzymatic activity was determined to be 5.6. The role of this enzyme in cytolytic function was investigated by examining the effect of its substrates and inhibitors on granule- and cell-mediated lysis. pNC sulfate was shown to cause a dose-dependent inhibition of target cell lysis by isolated cytolytic granules (complete inhibition at 12.5 mM). Sulfite induced an incomplete inhibition (50% at 1 mM), whereas phosphate was essentially without inhibitory effect. Sulfate, on the other hand, altered lytic activity in a biphasic manner, inasmuch as it induced an inhibition of lysis at high concentrations and an increase of lysis at low concentrations. Cell-mediated lysis was inhibited by pNC sulfate in a dose-dependent fashion at concentrations greater than 2.5 mM, with nearly complete inhibition at 50 mM. Sulfate also altered the lytic activity by intact cells in a biphasic manner, although the effect was much less pronounced. Sulfite and phosphate caused only a 30% inhibition of lytic activity. These results suggest that the sulfatase enzyme is involved in NK cytolytic function, presumably at the lethal hit stage.  相似文献   

11.
A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and V(max) and K(m) values of its activity were found to be 800 U/L and 176.5 microM, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was 60-80 degrees C and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at 30-70 degrees C for 1 h, the enzyme activity was fully lost at 80 degrees C for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.  相似文献   

12.
Chromaffin cells from bovine adrenal medulla were examined for the presence of a specific prenylcysteine carboxymethyltransferase by using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine as artificial substrates and a crude cell homogenate as the enzyme source. From Michaelis-Menten kinetics the following constants were calculated: K(m) 90 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-farnesyl-L-cysteine; K(m) 52 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-geranylgeranyl-L-cysteine. Both substrates were methylated to an optimal extent at the pH range 7. 4-8.0. Methylation activity increased linearly up to 20 min incubation time and was dose dependent up to at least 160 microg of protein. Sinefungin and S-adenosylhomocysteine both caused pronounced inhibition, as also to a lesser extent did farnesylthioacetic acid, deoxymethylthioadenosine and 3-deaza-adenosine. Effector studies showed that the methyltransferase activity varied depending on the concentration and chemical nature of the cations present. Monovalent cations were slightly stimulatory, while divalent metallic ions displayed diverging inhibitory effects. The inhibition by cations was validated by the stimulatory effect of the chelators EDTA and EGTA. Sulphydryl reagents inhibited methylation but to different degrees: Hg(2+)-ions: 100%, N-ethylmaleimide: 30%, dithiothreitol: 0% and mono-iodoacetate: 20%. Due to the hydrophobicity of the substrates dimethyl sulfoxide had to be included in the incubation mixture (<4%; still moderate inhibition at more elevated concentrations). The detergents tested affected the methyltransferase activity to a varying degree. The membrane bound character of the methyltransferase was confirmed.  相似文献   

13.
A low Km cyclic AMP phosphodiesterase was purified to homogeneity from microsomes of bakers' yeast. "Intact" enzyme, purified from microsomes prepared in the presence of the protease inhibitor phenylmethylsulfonyl fluoride, had a specific activity of 0.6 mumol/min/mg of protein (30 degrees C, pH 8.0, 1 microM cyclic AMP), a pI of 6.65 +/- 0.15, and a molecular weight of 61,000 determined by gel electrophoresis in the presence of sodium dodecyl sulfate. Gel filtration of native enzyme suggested it is a monomer. When phenylmethylsulfonyl fluoride was omitted, a product ("nicked" enzyme) was obtained with a specific activity of 1.2 mumol/min/mg of protein, the same pI, and a similar amino acid composition; but gel electrophoresis now showed two bands, with molecular weights of 45,000 and about 17,000, together with a small amount of the 61,000 band. Apart from the higher specific activity of the nicked enzyme, no difference was found between the catalytic properties of the two enzyme forms. Between 40 nM and 1 microM cyclic AMP, an apparent Km of 170 nM was observed at pH 8.0, but at higher cyclic AMP concentrations (2-30 microM), Hofstee plots curved upwards. Cyclic deoxy-AMP was a substrate, but cyclic GMP was not and did not affect the activity towards cyclic AMP. Both enzyme forms contained tightly bound zinc. The metal chelators, 8-hydroxyquinoline and orthophenanthroline , caused progressive partial inactivation of the enzyme and a decrease in its affinity for cyclic AMP. Dialysis against Zn2+, Cu2+, Co2+, or Mn2+ (but not Mg2+ or Ni2+) reversed these changes.  相似文献   

14.
Rat tyrosine hydroxylase has been expressed at high levels in Spodoptera frugiperda cells using a baculovirus expression system. A cDNA containing the coding region for PC12 tyrosine hydroxylase was inserted into the unique EcoRI site of the transfer vector pLJC8 to yield the recombinant vector pLJC9. Spodoptera frugiperda cells were then co-infected with pLJC9 and wild type Autographa californica nuclear polyhedrosis virus. Recombinant virus particles containing the cDNA for tyrosine hydroxylase were selected by hybridization with authentic tyrosine hydroxylase cDNA. Three recombinant viruses were plaque-purified. All expressed a protein of Mr = 55,000 which reacted with antibodies to tyrosine hydroxylase. Forty-eight h after infection of cells with recombinant virus, the specific activity of tyrosine hydroxylase in the cell lysate was 30-100 nmol of dihydroxyphenylalanine produced/min/mg, consistent with 5-10% of the cell protein being tyrosine hydroxylase. Purification from 2.1 g of cells gave 5.8 mg of enzyme with a specific activity of 1.7 mumol of dihydroxyphenylalanine/min/mg. The purified enzyme is a tetramer of identical subunits, containing one covalently bound phosphoryl residue and 0.1 iron atom/subunit. No carbohydrate was detectable. Steady state kinetic results with tetrahydrobiopterin as substrate are consistent with a sequential mechanism for binding of tyrosine and tetrahydrobiopterin. Substrate inhibition occurs at tyrosine concentrations above 50 microM. Steady state kinetic parameters at pH 6.5 are Vmax = 74 min-1, KBH4 = 21 microM, KTyr = 9.4 microM, and Ko2 less than or equal to 6 microM. The Vmax value shows a broad pH optimum around pH 7. The KBH4 value is pH-dependent, increasing from about 20 microM below pH 7 to about 100 microM above pH 8. The KTyr value is independent of pH between pH 6 and pH 8.5.  相似文献   

15.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

16.
Malonyl coenzyme A synthetase (EC 6.2.1.14) was induced in Pseudomonas fluorescens grown on malonate as a sole carbon source. This enzyme was purified, for the first time, over 30-fold by the combination of ammonium sulfate precipitation, Sephadex G-150 gel filtration, DEAE-Sephacel ion exchange chromatography, and hydroxylapatite chromatography. The purified enzyme, which had a specific activity of about 0.512 mumol/min/mg, appeared to be electrophoretically homogeneous. The molecular size of the enzyme was determined to be 98,000 Da which is composed of two 49,000-Da subunits. The optimum pH for the enzyme was 7.5. Malonyl coenzyme A synthetase requires ATP, CoA, and Mg2+ for the full enzyme activity. With succinate or acetate, the synthetic rate of CoA derivative was 40% of that observed with malonate. The malonyl coenzyme A synthetase showed typical Michaelis-Menten kinetics for the substrate, malonate, ATP, and coenzyme A, from which the Km values were calculated to be 3.8 X 10(-4) M, 2 X 10(-3) M, and 10(-4) M and Vmax values to be 0.117 mumol/min/mg, 0.111 mumol/min/mg, and 0.142 mumol/min/mg, respectively. The purified malonyl coenzyme A synthetase was immunogenic in the rabbit and Ouchterlony double diffusion analysis revealed a single precipitant line with the enzyme. The antiserum inhibited the enzyme activity and the extent of inhibition was dependent on the amount of the serum added.  相似文献   

17.
Methylamine dehydrogenase from Paracoccus denitrificans was purified to homogeneity in two steps from the periplasmic fraction of methylamine-grown cells. The enzyme exhibited a pI value of 4.3 and was composed of two 46,700-dalton subunits and two 15,500-dalton subunits. Each small subunit possessed a covalently bound pyrrolo-quinoline quinone prosthetic group. The amino acid compositions of the large and small subunits are very similar to those of other methylamine dehydrogenases which have been isolated from taxonomically different sources. The enzyme was able to catalyze the oxidation of a wide variety of primary aliphatic amines and diamines, but it did not react with secondary, tertiary, or aromatic amines. The enzyme exhibited optimal activity at pH 7.5, with Km values of 12.5 microM for methylamine and 156 microM for phenazine ethosulfate and a Vmax of 16.9 mumol/min per mg of protein. No loss of enzyme activity was observed after incubation for 48 h at pH values ranging from 3.0 to 10.5, and the enzyme was very stable to thermal denaturation. Enzyme activity and immunological detection of each subunit were only observed with cells which had been grown on methylamine as a carbon source.  相似文献   

18.
Uridine kinase from Ehrlich ascites tumor cells has been purified about 60,000-fold to apparent homogeneity and with an overall recovery of about 40%. This purification was achieved using phosphocellulose and adenosine 5'-triphosphate-agarose affinity chromatography. The subunit molecular mass as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 31,000 daltons. With two-dimensional electrophoresis, only one spot was observed, indicating the absence of isoenzymes. Multiple peaks of activity are routinely observed on ion exchange chromatography or gel filtration, for both crude preparations or homogeneous uridine kinase, in agreement with our earlier results that this enzyme exists as multiple interconvertible oligomeric forms (Payne, R. C., and Traut, T. W. (1982) J. Biol. Chem. 257, 12485-12488). The purified enzyme has a specific activity of 283 mumol/min/mg of protein at 22 degrees C. Initial velocity studies using uridine and ATP are consistent with a sequential mechanism. Km values for uridine, cytidine, and ATP are 40, 57, and 450 microM, respectively. CTP and UTP are competitive inhibitors with respect to ATP, with Ki values for CTP and UTP of 10 and 61 microM, respectively. The enzyme was active with several nucleoside analogs, the Km values being 69 microM (5-fluorouridine), 200 microM (3-deazauridine), and 340 microM (6-azauridine). The pure enzyme is very sensitive to freezing, but can be maintained at O degrees C for 8 weeks with only 20% loss of activity. For long-term storage, enzyme in 50% glycerol can be maintained at -20 degrees C for many months with no detectable loss of activity.  相似文献   

19.
A phosphatidylinositol-4-phosphate (PIP) kinase activity was purified from rat brain extract through several chromatographic steps to yield an active preparation (specific activity 1 mumol of 32P incorporated into phosphatidylinositol 4,5-bisphosphate/min per mg of protein) with an apparent molecular size of 100-110 kDa in the native form. The isolated PIP kinase required Mg2+ (optimally 20-30 mM) for its activity and was not influenced by Ca2+. The enzyme used ATP (Km 25 microM) and GTP (Km 133 microM) as phosphate sources and appeared specific for PIP (Km 3.3 micrograms/ml) as the lipid substrate. The PIP-phosphorylation reaction was inhibited by micromolar concentrations of heparin [ID50 (concn. giving 50% inhibition) 2 micrograms/ml] and the flavonoid quercetin (ID50 0.2 microM). Whereas heparin behaves as a competitive inhibitor to PIP, quercetin was competitive towards ATP (or GTP). Phosphorylation of the preparation by a highly active purified protein kinase C did not detectably alter PIP kinase activity. Whereas 12-O-tetradecanoylphorbol acetate and various phospholipids had no effect, phosphatidylserine elicited a dose-dependent activation of PIP activity. This suggests that a phosphatidylserine-PIP kinase interaction may be considered as a possible regulatory process at the cell-membrane level.  相似文献   

20.
Human uterine cervix possesses a high 12-lipoxygenase activity; this enzyme has been isolated in a purified form from the squamous epithelial region of human cervix and its major properties have been investigated. Enzyme activity was present in all subcellular fractions obtained by centrifugation; the highest specific activity was associated with the microsome fraction (160,000 X g pellet). Purification of the enzyme was achieved by acetone precipitation, ion exchange chromatography on CM-cellulose and affinity chromatography on linoleyl-aminoethyl-Sepharose. The product from the incubation of sodium [1-14C]arachidonate with crude enzyme extracts co-chromatographed with authentic 12-hydroxyeicosatetraenoic acid, but the purified enzyme gave a product that behaved like the 12-hydroperoxy derivative. The enzyme had optimum activity at pH 6.5, a Km of 15 microM for arachidonic acid and was stimulated by ATP and Ca2+. Enzyme activity was inhibited by esculetin, nordihydroguaiaretic acid, eicosatetraynoic acid, detergents at concentrations greater than 0.1% (w/v) and preincubation of substrate with GSH and GSH peroxidase. The occurrence of a high 12-lipoxygenase activity is discussed in relation to the specific physiological functions of this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号