首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of the submersed aquatic macrophyte, Hydrilla verticillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/1) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 ?) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from hight Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

2.
Incubation of the submersed aquatic macrophyte, Hydrilla vertieillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/l) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 -) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from high Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

3.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver.  相似文献   

4.
beta-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) was purified 145-fold from Mycobacterium phlei ATCC354 by ammonium sulphate fractionation and DEAE-cellulose chromatography. The pH optima for oxidation and reduction reactions were 8.4 and 6.8 respectively. The purified enzyme was specific for NAD, NADH, acetoacetate and D(-)-beta-hydroxybutyrate. Km values for DL-beta-hydroxybutyrate and NAD were 7.4 mM and 0.66 mM respectively. The enzyme was inactivated by mercurial thiol inhibitors and by heat, but could be protected by NADH, Ca2+ and partially by Mn2+. The enzyme did not require metal ions and was insensitive to EDTA, glutathione, dithiothreitol, beta-mercaptoethanol and cysteine.  相似文献   

5.
The rat liver rhodanese (thiosulphate: cyanide sulfurtransferase EC 2.6.1.1) has been immobilized on polyacrylamide gels. The immobilized enzyme had a pH optimum of 7.4 and Km values of 3.25 mM and 1.12 mM for S2O2?3 and KCN, respectively. The enzyme was competitively inhibited by NaNO2 and CH3COONa and noncompetitively by amyl-nitrite. A modulation of activity was observed in the presence of Ca2+, Zn2+, and Cu2+. The results are discussed in line with the detoxicating function of liver rhodanese.  相似文献   

6.
Studies of the response of phosphoenolpyruvate carboxylase from C3 (wheat [Triticum aestivum L.]), C4 (maize [Zea mays L.]), and Crassulacean acid metabolism (CAM) (Crassula) leaves to the activator glucose-6-phosphate as a function of pH showed that the binding of the activator and the response path to activation were essentially identical for all three enzymes. The level of affinity for the activator differed, with the CAM enzyme having the highest affinity and the maize enzyme the lowest. The observed pK values suggest that histidine and cysteine groups may be involved in activation by glucose-6-phosphate. The presence of glucose-6-phosphate protected the enzyme against inactivation of the activation response by p-chloromercuribenzoate. The maximal activation response to glucose-6-phosphate showed differences among the three enzymes including different pH optima and different pH profiles. Here the maize leaf enzyme showed a potential response about twice as great as that of the C3 and CAM enzymes.  相似文献   

7.
Arginine decarboxylase (EC 4.1.1.19) has been purified and characterized from Brassica campestris cv B-9. The enzyme was purified 1120 fold and the recovery was 9%. The mol wt of the enzyme determined by gel filtration was 240 kD with identical subunits of 60 kD. The pH and temperature optima for the enzyme were 8.0 and 30°C respectively. The Km was 0.31mM. Polyamines inhibited the enzyme activity significantly. Immunodiffusion with ADC-specific antibodies showed cross reactivity against purified ADC from Brassica.  相似文献   

8.
1. Octopine dehydrogenase and lactate dehydrogenase were purified 190-fold and 10-fold respectively from the adductor muscle of the marine bivalve Cardium edule by gel filtration on Sephadex G-100 and chromatography on DEAE-Sephadex A-50. 2. Lactate dehydrogenase was capable to convert D- and L-lactate, had a molecular weight of about 70 000 and 280 000 daltons, exhibits no distinct pH optimum and was not inhibited by lactate. The enzyme showed apparent Km values of 0.16 mM for pyruvate and 16 mM and 48 mM for D- and L-lactate respectively. 3. In comparison to the purified enzymes from other species, octopine dehydrogenase from Cardium edule showed similar biochemical properties : pH optima of 6.8 and 8.7 respectively, Km values of 0.9 mM (for pyruvate) and 2.0 mM (for arginine), a molecular weight of 37 000 daltons and inhibition by octopine. Electrophoretic studies on standard polyacrylamide gels showed five isoenzymes. 4. The biochemical properties of both dehydrogenases are compared to the conditions in vivo of these animals and the biological role of the octopine dehydrogenase is discussed.  相似文献   

9.
1. On subcellular fractionation of rat brain homogenate, polyphosphoinositide phosphomonoesterase activity was greater in the cytosol than the membranous fractions. 2. The enzyme was purified from the cytosol by column chromatography on DEAE-cellulose, calcium phosphate gel and Sephadex G-100. 3. The final preparation of the enzyme showed a 430-fold purification over the whole homogenate and appeared to be homogeneous since it gave a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on isoelectric focusing. The enzyme has a relatively low molecular weight and an isoelectric point of 6.8. 4. The phosphatase showed a high affinity for triphosphoinositide. Without added Mg2+, the Km was 25 muM and V was 33 mumol Pi released/min/mg protein. 5. The enzyme hydrolysed diphosphoinositide at a slower rate than triphosphoinositide. In the presence of 10 mM Mg2+, the Km values for triphosphoinositide and diphosphoinositide were 5 muM and 25 muM respectively and V was the same for each substrate. 6. Both Mg2+ and Ca2+ activated the enzyme. While Ca2+ produced maximum activation at 100 muM, a much higher concentration of Mg2+ (10 mM) was required to elicit comparable activation. The enzyme did not show an absolute requirement for Mg2+ or Ca2+ as it exhibited low activity in the presence of 0.5 mM EDTA or EGTA. 7. The phosphatase showed maximum activity between 7.4 and 7.6. A drop in pH to 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity. 7.0 activated it almost completely, whereas an increase in pH to 8.0 halved the activity.  相似文献   

10.
《Phytochemistry》1986,25(10):2267-2270
5′-Nucleotidase from pigeonpea nodules has been resolved into two forms, N-I and N-II, having M,s of 52 000 and 119 000, respectively. Both forms had pH optima in the acidic range (between pH 5.2 and 5.7) with either CMP, GMP, XMP, IMP or AMP as the substrate. Up to pH 6.6, both forms showed higher activity with CMP followed by GMP, XMP, IMP and AMP, respectively. However, the activity changed with pH in the alkaline range making the enzyme relatively more active with purine nucleotides. Neither of the forms had a requirement for any of the metal ions tested. Fe3+ inhibited the enzyme activity; the inhibition at 5, 10 and 15 mM concentrations being 11, 43 and 47%, respectively with N-I and 14,47 and 52%, respectively with N-II. Km values for AMP, IMP, GMP, CMP and XMP were 0.10, 0.18, 0.40, 0.40 and 0.77 mM, respectively with N-I and 0.12, 0.20, 0.40, 0.40 and 0.99 mM, respectively with N-II. The enzyme was inhibited non-competitively by adenosine and inosine; Ki values being 1.78, 0.25 and 0.30; 3.50, 2.12 and 0.75 mM, respectively with AMP, IMP and XMP as the substrate.  相似文献   

11.
S X Lin  J P Shi  X D Cheng  Y L Wang 《Biochemistry》1988,27(17):6343-6348
A Blue Sephadex G-150 affinity column adsorbs the arginyl-tRNA synthetase of Escherichia coli K12 and purifies it with high efficiency. The relatively low enzyme content was conveniently purified by DEAE-cellulose chromatography, affinity chromatography, and fast protein liquid chromatography to a preparation with high activity capable of catalyzing the esterification of about 23,000 nmol of arginine to the cognate tRNA per milligram of enzyme within 1 min, at 37 degrees C, pH 7.4. The turnover number is about 27 s-1. The purification was about 1200-fold, and the overall yield was more than 30%. The enzyme has a single polypeptide chain of about Mr 70,000 and binds arginine and tRNA with 1:1 stoichiometry. For the aminoacylation reaction, the Km values at pH 7.4, 37 degrees C, for various substrates were determined: 12 microM, 0.9 mM, and 2.5 microM for arginine, ATP, and tRNA, respectively. The Km value for cognate tRNA is higher than those of most of the aminoacyl-tRNA synthetase systems so far reported. The ATP-PPi exchange reaction proceeds only in the presence of arginine-specific tRNA. The Km values of the exchange at pH 7.2, 37 degrees C, are 0.11 mM, 2.9 mM, and 0.5 mM for arginine, ATP, and PPi, respectively, with a turnover number of 40 s-1. The pH dependence shows that the reaction is favored toward slightly acidic conditions where the aminoacylation is relatively depressed.  相似文献   

12.
Sucrose synthetase was purified about 130-fold from morning-glory (Pharbitis nil Choisy cv. Murasaki) callus cells, and the properties of sucrose synthesis and cleavage activities of the enzyme were compared. The enzyme preparation gave a single band by disc electrophoresis. The molecular mass of the enzyme was estimated to be 4.2 × 105 by gel filtration. The enzyme preparation gave two bands by SDS disc electrophoresis, suggesting the molecular mass of about 3.8 ×104 and 7.0 × 104. The pH optima of sucrose synthesis and cleavage activities of the enzyme were different from each other, giving pH 9.0 and pH 6.5 respectively. MgCl2, MnCl2 and CaCl2 activated the sucrose synthesis activity about two times the normal rate and conversely inhibited the sucrose cleavage activity. F-6-P was not replaced by fructose. UDP was the only valuable substrate as a nucleotide diphosphate. The enzyme showed the negative ecoperativity effect of UDPG suggesting to be an allosteric enzyme. The Km values of sucrose and fructose were calculated to be 167 mM and 5 mM, respectively. UDP suggested substrate inhibition. The apparent equilibrium constant varied between 1 to 3. Based on these results, the role of the enzyme in the sucrose metabolism of morning-glory callus cells will be discussed.  相似文献   

13.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

14.
Tomato (C3-plants) and maize (C4-plants) were grown in a nutrient solution to which triacontanol was added twice a week. After about 4 weeks the triacontanol treatment caused a significant increase in the dry weight of the tomato plants. Leaf area and dry weight measurements of tomato leaves at different stages of development showed that the largest increase in growth was obtained when triacontanol treatment was initiated before bud formation. In maize, no effect of the triacontanol treatment on dry wieght was observed. Photosynthesis was inhibited by 27% in young leaves from triacontanol-treated tomato plants and 39% in the controls, when the oxygen concentration was raised from 2% to 21%. In maize no change in photosynthesis could be observed, neither after altered oxygen concentration nor after triacontanol treatment. The difference in the response of C3- and C4-plants to triacontanol indicates that it regulates processes related to photosynthesis.  相似文献   

15.
Urease from seeds of water melon was purified to apparent homogeniety upto a sp act of 3750 units/mg protein with 31% recovery. Enzyme showed single protein band on native PAGE by urease specific staining. The mol wt of the enzyme was 4,70,000 and the preparation was free from bound nucleotides (A280/A260=1.14). The enzyme exhibited maximum activity in 50 mM Tris-acetate buffer (pH 8.5). The Km for urease was 8 mM. The enzyme was not inhibited by 25 mM of EDTA in 50 mM Tris-acetate buffer (pH 8.0 and 8.5).  相似文献   

16.
Robert A. Kennedy 《Planta》1976,128(2):149-154
Summary Ribulose diphosphate (RuDP) and (PEP) phosphoenolpyruvate carboxylase enzyme activities were studied in young, mature, and senescent Portulaca oleracea leaves. While the absolute amount of both the C3 (RuDP) and C4 (PEP) carboxylase is less in senescent leaves than in mature leaves, RuDP carboxylase activity is reduced to a lesser degree. In senescent leaves, PEP carboxylase activity equals 10% of that in mature tissue, but RuDP carboxylase is 27% of that in mature leaves. The same ontogenetic series was also used to determine photorespiration rates and responses to several gas treatments. Young and mature leaves were unaffected by changes in the light regime or oxygen concentrations, and exhibited typical C4-plant light/dark 14CO2 evolution ratios. Senescent leaves, on the other hand, have photorespiration ratios similar to C3-plants. In addition, senescent leaves were affected by minus CO2, 100% O2 and N2 in a manner expected of C3-plants, but not C4-plants. These results are discussed in terms of a relative increase in activity of the C3 cycle in later developmental stages in this plant.Abbreviation RuDP ribulose diphosphate - PEP phosphoenolpyruvate - PGA phosphoglyceric acid  相似文献   

17.
Three forms of alpha-glucosidase, I, II, and III, have been purified from the whole body extract of adult flies of Drosophila melanogaster in yields of 2.1, 5.3, and 6.7%, respectively. The purification procedures involved ammonium sulfate fractionation, Con A-Sepharose 4B affinity chromatography, DEAE-Sepharose CL-6B ion exchange chromatography, Sephacryl S-200 gel filtration, and preparative gel electrophoresis. Each purified enzyme showed a single band on polyacrylamide gel on both protein and enzyme activity staining. The molecular weights of alpha-glucosidases I, II, and III were estimated to be 200,000, 56,000, and 76,000, respectively, by gel filtration. SDS gels indicated that alpha-glucosidases II and III were each composed of a single polypeptide chain, whereas alpha-glucosidase I was composed of two identical subunits. Both alpha-glucosidases II and III hydrolyzed sucrose and p-nitrophenyl-alpha-D-glucoside (PNPG), but alpha-glucosidase I hydrolyzed PNPG to a much lesser extent than sucrose. For sucrose the pH optima of alpha-glucosidases I, II, and III were pH 6.0, 5.0, and 6.0 and the Km values were 13.1, 8.9, and 10 mM, respectively. For PNPG the pH optima of alpha-glucosidases II and III were pH 5.5 and 6.5 and the Km values were 0.77 and 0.21 mM, respectively.  相似文献   

18.
1. 2-Oxoaldehyde dehydrogenase was purified from sheep liver and gave one band on polyacrylamide-gel electrophoresis. 2. The enzyme was completely dependent for its activity on the presence of Tris or one of a number of related amines, all of general structure: (See article). When more than one R group was hydrogen no enzyme activity was observed. 3. Only one of these amines is known to exist in living tissues and large concentrations of all amines were required for maximum activity. L-2-Aminopropan-1-ol was the most effective amine on the basis of substrate Km and Vmax. values and the amine Km values. 4. The enzyme was activated by phosphate which lowered the Km values for methylglyoxal, amine and NAD+. 5. The pH optimum of the enzyme was 9.3 and there was no activity at pH values below 7.8. A search for activators that might produce activity at pH 7.4 proved unsuccessful. 6. The enzyme was inhibited by rather large concentrations of barbiturates (6-46 mM) and nitro-alcohol analogues of the activating amines (66-139 mM).  相似文献   

19.
The climate of the loess-hill area near Lanzhou, on the Yellow River, Gansu-Province, NW-China is arid throughout the year. The vegetation is xerophilic and mainly dominated by species of Zygophyllaceae, Chenopodiaceae, Plumbaginaceae, Tamaricaceae, Asclepiadaceae and Asteraceae. Among 11 species sampled of these families, δ13C-analyses only indicated C4-photosynthesis for 2 species. This relatively low frequency of C4-plants may be due to elevation (1978 m a.s.l.) and the relatively cold temperatures (annual mean 5.9°C).  相似文献   

20.
Gut chitin synthase was characterized and the sterols and ecdysteroids in the sugarcane rootstalk borer weevil, Diaprepes abbreviatus, were identified. An in vitro cell-free chitin synthase assay was developed using larval gut tissues from D. abbreviatus. Subcellular fractionation experiments showed that the majority of chitin synthase activity was located in 10,000g pellets. The gut chitin synthase requires Mg2+ to be fully active: 7–8-fold increases in activity were obtained with 10 mM Mg2+ present in reaction mixture. Calcium also stimulated activity (4–5-fold with 10 mM Ca2+), while Cu+2 completely inhibited at 1 mM. Other monovalent and divalent cations had little or no effect on activity. The pH and temperature optima were 7 and 25°C, respectively. Gut chitin synthesis was activated ca. 50% by trypsin treatments. GlcNAc stimulated chitin synthase activity, but Glc, GlcN and glycerin did not. Polyoxin D, UDP, and ADP inhibited the chitin synthase reaction with I50's of 75 μM, 2.3 mM, and 3.6 mM, respectively. Nikkomycin Z was a potent inhibitor of chitin synthase (91% inhibition at 10 μM). Tunicamycin and diflubenzuron had no effect on the enzyme. The apparent Km and Vmax for the gut chitin synthase were, respectively, 122.5 ± 7.4 μM and 426 ± 19.7 pmol/h/mg protein utilizing UDP-GlcNAc as the substrate. Sterol analyses indicated that cholesterol was the major dietary and larval sterol. HPLC/RIA data indicated that 20-hydroxyecdysone was the major molting hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号