首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrinolytic components after venous occlusion and concentrations of tissue plasminogen activator inhibitor were studied in 100 consecutive patients with confirmed recurrent deep vein thrombosis or pulmonary embolism. After 20 minutes of venous occlusion the fibrinolytic response was decreased in 33 patients, as measured both amidolytically with S-2251 and on fibrin plates. Two different mechanisms responsible for the poor fibrinolytic response could be distinguished. Twenty two of the patients in whom the response was poor released normal amounts of tissue plasminogen activator antigen, as assayed by immunoradiometric assay, but had appreciably increased concentrations of tissue plasminogen activator inhibitor. The 11 other patients in whom the response was poor had both low tissue plasminogen activator activities and low tissue plasminogen activator antigen concentrations but normal concentrations of tissue plasminogen activator inhibitor. The results show not only that defective synthesis or release of tissue plasminogen activator may be important in the pathogenesis of venous thrombosis but also that a large group of patients with thrombosis have an increased concentration of the inhibitor to tissue plasminogen activator.  相似文献   

2.
We have examined the effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner (threshold dose, 0.1 ng/ml; maximal dose, 10-100 ng/ml). The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP) abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56 degrees C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of 125I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa. The complex could be detected by chromatography on Sephadex G-100, but not by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These findings suggest that low doses of endotoxin suppress fibrinolytic activity in endothelial cells by stimulating the production or expression of a fast-acting, relatively labile inhibitor of plasminogen activator.  相似文献   

3.
The endothelial cell-type plasminogen activator inhibitor (PAI-1) may exist in an inactive, latent form that can be converted into an active form upon treatment of the protein with denaturants, such as sodium dodecyl sulfate, guanidine HCl, or urea. The present paper demonstrates that latent PAI-1 can be activated by lipid vesicles containing the negatively charged phospholipids phosphatidylserine (PS) or phosphatidylinositol. The presence of a net negative charge on the phospholipid headgroup is essential for activation, since lipid vesicles consisting exclusively of zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, do not activate PAI-1. In the presence of PS vesicles, PAI-1 inhibited tissue-type plasminogen activator 50-fold more effectively than in the absence of phospholipids, whereas sodium dodecyl sulfate enhanced PAI-1 activity by 25-fold. In mixed phospholipid vesicles containing PS and phosphatidylcholine in various molar ratios, the extent of PAI-1 activation was directly related to the PS content of the phospholipid membrane. Ca2+ ions interfered with the inhibitory activity of PS-activated PAI-1, suggesting that Ca2+ ions may regulate PAI-1 activity in the presence of negatively charged phospholipids. An important consequence of these findings is that, as in blood coagulation, negatively charged phospholipids may play an important regulatory role in controlling the fibrinolytic system by activating an inhibitor of tissue-type plasminogen activator.  相似文献   

4.
5.
Three active-site-acylated derivatives of the activator plasmin-streptokinase complex have been synthesized: n-anisoyl-, n-trans-(N,N,N-trimethylamino)-cinnamoyl- and n-guanidine-benzoyl-plasmin-streptokinase. Their diacylation rate constants were 4.2 x 10(-4), 2.0 x 10(-4) and 0.6 x 10(-4) s-1, respectively. Kinetics of lysis of fibrin clots, containing plasminogen or plasminogen and alpha 2-antiplasmin, by acylplasmin, by a free activator complex and by two acylated activator complexes has been studied. It is shown that in the presence of zymogen and inhibitor the effect of acylactivator, as a fibrinolytic, is 163 times more effective than that of acylenzyme and the fibrinolytic response increases with the doze of acylactivator. The rate of fibrinolysis by a free plasmin-streptokinase complex was higher without the inhibitor than that of fibrinolysis by its acylated derivatives; fibrinolytic action of acylactivators was more effective in the presence of the inhibitor.  相似文献   

6.
E.M. Awad   《Phytomedicine》2005,12(1-2):100-107
It is generally accepted that the fibrinolytic potential of tumor cells is related to their malignant phenotype. In the present study, Nigella sativa oil (NSO) was studied to evaluate its effect on the fibrinolytic potential of the fibosarcoma cell line HT1080 to elucidate whether this oil might have an antitumor activity through its modulation of the fibrinolytic potential of such cells. NSO produced a concentration-dependent inhibition of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 (PAI-1). When subconfluent HT1080 cells were conditioned with oil, a concentration (0.0-200 microg oil/ml)-dependent decrease in t-PA, u-PA and PAI-1 antigen was observed. There was also a concentration-dependent decrease (from 0.0 to 112.5 microg oil/ml) in the confluent cultures. The results showed that blackseed oil decreases the fibrinolytic potential of the human fibrosarcoma cell line (HT1080) in vitro, implying that inhibition of local tumor invasion and metastasis may be one such mechanism.  相似文献   

7.
The role of plasminogen activator in ovulation was investigated using the inhibitor, trans-aminomethylcyclohexane carboxylic acid (t-AMCHA). In the regular cycle rat, the plasminogen activator activity of the follicles increased from the diestrus to the estrus phase. In the latter phase, a proteolytic enzyme which was not inhibited by t-AMCHA appeared. After ovulation, the plasminogen activator activity decreased. When ovulation was induced in immature rats by pregnant mare serum gonadotrophin and human chorionic gonadotrophin, remarkable fibrinolytic activity appeared in the ovaries immediately before ovulation. When t-AMCHA was given in the ovulation-induced rats, the fibrinolytic activity of the ovaries was suppressed, the number of ovulated ova decreased and the timing of ovulation was delayed. When t-AMCHA solution was given to rats in the proestrus phase, ovulation was almost completely suppressed, but aprotinin solution exerted no effect on ovulation. These results suggest that plasminogen activator is a key enzyme in ovulation, and that the chain reaction from plasminogen activator to proteolytic enzyme (including collagenase) is of greater importance than that of plasminogen activator to plasmin.  相似文献   

8.
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:OO p.m. and then dropped to trough levels at 3:00–4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleepfwake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor- 1 (PAL l), show a marked circadian variation in plasma. In contrast, levels of plasminogen, α2-antiplasmin, urinarytype plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAL 1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAL 1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release. products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAL 1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore, to define the 24-h pattern of plasma tPA and PAI- 1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population. In normal conditions, the 24-h variation of plasma tPA and PAI- 1 is not associated with parallel circadian changes in effective fibrinolysis, assessed as plasma D-dimer concentrations, presumably because fibrin generation in the circulation is low. In diseases in which fibrin formation is increased, however, the physiological drop of fibrinolytic activity in the morning hours may favour thrombus development at this time of day, in agreement with the reported higher morning frequency of acute thrombotic events.  相似文献   

9.
Impairment of the release of plasminogen activator has been looked for in patients with a predisposition to vascular disease or venous thrombosis. In normal people the fibrinolytic activity of the blood rises sharply after strenuous physical exercise or after the administration of certain drugs, among which DDAVP. These measures fail to elicit a normal response in many of these patients. In most cases this turned out to be due to a high level of a circulating plasminogen activator inhibitor which suppresses the rise in fibrinolytic activity. Release of activator can only be demonstrated reliably by the assay of t-PA-antigen. An impaired release appears to be very rare and in the experience of the author it occurs with some regularity only in patients with terminal renal insufficiency.  相似文献   

10.
11.
12.
C Ts'ao  W F Ward 《Radiation research》1985,103(3):393-402
Male rats were sacrificed 2 or 6 months after a single dose of 0-30 Gy of 60Co gamma rays to the right hemithorax. At autopsy, macrophages were lavaged from the right lung, counted, and frozen. The right (irradiated) and the left (shielded) lungs were frozen, then assayed for plasminogen activator (PLA) activity by the fibrin plate lysis method. Freeze-thawed macrophages were assayed for both PLA activity (125I-fibrin clot lysis method) and fibrinolytic inhibitor activity (inhibition of urokinase-induced fibrin lysis). There was a linear, dose-dependent decrease in right lung PLA activity over the dose range of 10-30 Gy at 2 and 6 months postirradiation, reductions of 3.1 and 2.6% per Gy, respectively. PLA activity at all radiation doses was 10-15% higher at 6 months than at 2 months (P less than 0.05), indicative of a partial recovery of this endothelial function in the irradiated lung. There were no significant changes in PLA activity in the shielded left lung at any dose or time. There also was a linear, dose-dependent increase in the number of macrophages lavaged from the right lung at both 2 and 6 months postirradiation, with larger numbers recovered after all doses at 2 months. PLA activity per 10(6) macrophages decreased with increasing radiation dose at both autopsy times, closely paralleling lung PLA activity. This radiation-induced decrease in macrophage PLA activity was not due to increased fibrinolytic inhibitor activity in the irradiated macrophages. These data quantitate the dose response and time course of radiation-induced fibrinolytic defects in rat lung and suggest that information obtained from a minimally invasive procedure such as bronchoalveolar lavage may serve as an index of the degree of pulmonary fibrinolytic dysfunction after irradiation.  相似文献   

13.
J M Edelberg  S V Pizzo 《Biochemistry》1990,29(25):5906-5911
Heparin sulfate and the less sulfated glycosaminoglycan heparan sulfate enhance human plasminogen (Pg) conversion to plasmin by tissue-type plasminogen activator (t-PA). Kinetic studies indicate that both heparin and heparan increase the kcat of t-PA-mediated Pg activation by 25- and 3.5-fold, respectively. The Km of plasmin formation is unaltered by the presence of either heparin or heparan. Both heparin and heparan stimulate the activity of t-PA by interacting with the finger domain of t-PA, with association constants of 1 microM and 200 nM, respectively. Additionally, the lipoproteins lipoprotein(a) [Lp(a)] and low-density lipoprotein (LDL) inhibit the heparin enhancement of Pg activation. Lp(a) is a competitive inhibitor and LDL is a mixed inhibitor of t-PA-mediated Pg activation, with inhibition constants of 30 and 70 nM, respectively. The inhibition constants correspond to physiologic concentrations of these lipoproteins. These data suggest that heparin, heparan, and lipoproteins may play an important in vivo role in regulating cell surface associated activation of the fibrinolytic system.  相似文献   

14.
Purification of epidermal plasminogen activator inhibitor   总被引:1,自引:0,他引:1  
T Hibino  S Izaki  M Izaki 《FEBS letters》1986,208(2):273-277
A plasminogen activator inhibitor was purified from human cornified cell extract by DEAE-Sepharose, Sephacryl S-200, and high-performance liquid chromatographies on hydroxyapatite HPHT and anion-exchanger Mono Q at pH 7.2 and 8.0. The purified inhibitor showed Mr 43,000 and pI 5.2 50% inhibition of fibrinolytic activity (1.5 IU) of urokinase and tissue-type plasminogen activator was attained by 0.60 ng and 11.0 ng purified inhibitor, respectively. Synthetic substrate assay demonstrated slow tight-binding inhibition to both urokinase and tissue-type plasminogen activator. The inhibitor did not inactivate plasmin, thrombin, glandular kallikrein or trypsin.  相似文献   

15.
Mixed cultures of mouse fibroblasts and mouse fibroblasts transformed with Kirsten murine sarcoma virus were grown in petri dishes and overlayed with casein. The appearance of focal lysis zones required the presence of transformed cells in the culture and plasminogen in the overlay, indicating that caseinolysis was due to plasminogen activator released by the malignant cells. Caseinolysis was inhibited by addition of human plasma or bovine pancreatic trypsin inhibitor to the overlay, 1 ml of plasma being equivalent to 67 ± 18 (mean ± S.E.) kallikrein inhibitor (KI) units of trypsin inhibitor.The culture fluid of a human melanoma line induced lysis of a fibrin clot, 1 ml of culture fluid being equivalent to 250 CTA units of urokinase (EC 3.4.99.26). Fibrinolysis was inhibited by addition of human plasma or trypsin inhibitor, 1 ml of plasma being equivalent to 94 ± 34 KI units of trypsin inhibitor.Specific removal of antiplasmin, the fast-reacting plasmin inhibitor (Collen, D. (1976) Eur. J. Biochem. 69, 209), from plasma by immunoabsorption completely abolished its inhibitory activity, both in the caseinolytic and fibrinolytic assays. It is therefore concluded that antiplasmin is the only protein in human plasma capable of inhibiting the fibrinolytic activity associated with oncogenic transformation or neoplasia. Whether this effect is exclusively due to inhibition of formed plasmin or also to interference with plasminogen activvtion remains unsettled.  相似文献   

16.
Long-term treatment of rabbits with beta-sitosterol (40 mg/kg over 3 months) caused an increased fibrinolytic activity in blood, an increased fibrinolytic capacity and an enhanced plasminogen activator activity in tissue of lungs and kidneys. The 3-months lasting beta-sitosterol administration did not influence the content of plasminogen activator inhibitor, plasminogen, alpha 2-antiplasmin, antithrombin III and fibrinogen.  相似文献   

17.
BACKGROUND: One major barrier to successful xenotransplantation is acute vascular rejection, a process pathologically characterized by microvascular thrombosis and diffuse fibrin deposition in transplant blood vessels. This pathologic picture may result from a disturbance in the coagulant or fibrinolytic pathways that regulate normal vascular patency. This study evaluated the regulation of fibrinolytic activity defined by tissue plasminogen activator and plasminogen activator inhibitor-1 as it may exist in the setting of acute vascular rejection. MATERIALS AND METHODS, RESULTS: Serial biopsies from cardiac xenotransplants evaluated by immunofluorescence microscopy demonstrated progressive decreases in tissue plasminogen activator and increases in plasminogen activator inhibitor-1. In vitro studies measuring fibrinolytic activity of cell culture medium from porcine aortic endothelial cells stimulated with human serum or autologous porcine serum revealed that human serum triggered as much as 93% increase in antifibrinolytic activity. CONCLUSIONS: These findings demonstrate that porcine vascular endothelial cells change toward an antifibrinolytic state following stimulation with human xenoreactive antibodies and complement. The shift is at least partly explained by an increased ratio of plasminogen activator inhibitor-1 to tissue plasminogen activator, and is at least in part mediated by the activation of complement. This increased antifibrinolytic activity may contribute to the thrombotic diathesis seen in acute vascular rejection in pig-to-primate xenografts.  相似文献   

18.
An investigation of the pulmonary fibrinolytic enzyme system in 31 infants who died with hyaline membrane formation was reviewed. There was complete lack of plasminogen activator activity in the lungs of 84 per cent of these infants. This phenomenon was shown to result from an abnormal inhibitor. A comparable inhibitor was found in normal placental tissue, and it is postulated that this inhibitor is released into the circulating blood as the result of placental infarction. Fibrin, a basic component of the hyaline membrane, is probably precipitated from a physiological capillary transudate associated with the formation of amniotic fluid by the lungs. The presence of an inhibitor of fibrinolysis would then result in the accumulation of intrapulmonary fibrin and the formation of hyaline membranes.  相似文献   

19.
Circadian variation of fibrinolytic activity in blood.   总被引:9,自引:0,他引:9  
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:00 p.m. and then dropped to trough levels at 3:00-4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleep/wake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1), show a marked circadian variation in plasma. In contrast, levels of plasminogen, alpha 2-antiplasmin, urinary-type plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAI-1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAI-1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAI-1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore to define the 24-h pattern of plasma tPA and PAI-1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The process of muscle regeneration in normal and dystrophic muscle depends on locally produced cytokines and growth factors and requires the activity of the urokinase plasminogen activator/urokinase plasminogen activator receptor/plasminogen activator inhibitor-1 system. In this study we tested the effect of basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) and transforming growth factor-beta (TGFbeta) on the fibrinolytic pattern of normal and dystrophic satellite cells, their mitogenic and motogenic activities and the dependence of such activities on the cell-associated fibrinolytic system. We have observed that the urokinase plasminogen activator (u-PA) receptor is weakly upregulated by bFGF in normal satellite cells, while it is strongly up-regulated by TGFbeta, mainly in dystrophic myoblasts. bFGF up-regulated u-PA in both normal and dystrophic myoblasts grown in primary culture, while a striking down-regulation was observed with TGFbeta. TGFbeta was the only growth factor able to exceptionally up-regulate plasminogen activator inhibitor-1 (PAI-1), mainly in dystrophic satellite cells. HGF did not show any activity on the fibrinolytic system. Proliferation and invasion into Matrigel matrices of normal and dystrophic cells occurred regardless of the growth factor-dependent regulation of the fibrinolytic system. Nevertheless, each growth factor required the efficiency of the constitutive cell-associated fibrinolytic system to operate, as shown by impairment of growth factor activity with antagonists of u-PA and of its receptor. Noteworthy, TGFbeta induced a dose-dependent increase of Matrigel invasion only in dystrophic myoblasts. Since TGFbeta-challenged dystrophic myoblasts undergo an exceptional up-regulation of the receptor and of PAI-1, we propose the possibility that the TGFbeta-induced fibrinolytic pattern (low urokinase plasminogen activator, high receptor and high PAI-1) may be exploited to promote survival and spreading of transplanted engineered myoblasts in Duchenne muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号