首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

2.
This study describes diversity patterns in the flora of the Campo-Ma’an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with Calpocalyx heitzii and Sacoglottis gabonensis, to the submontane forest at higher elevations and the mixed evergreen and semi-deciduous forest in the drier Ma’an area. We tested whether there is a correlation between tree species diversity and diversity of other growth forms such as shrubs, herbs, and lianas in order to understand if, in the context of African tropical rain forest, tree species diversity mirrors the diversity of other life forms or strata. Are forests that are rich in tree species also rich in other life forms? To answer this question, we analysed the family and species level floristic richness and diversity of the various growth forms and forest strata within 145 plots recorded in 6 main vegetation types. A comparison of the diversity within forest layers and within growth forms was done using General Linear Models. The results showed that tree species accounted for 46% of the total number of vascular plant species with DBH ≥1 cm, shrubs/small trees 39%, climbers 14% and herbs less than 1%. Only 22% of the diversity of shrubs and lianas could be explained by the diversity of large and medium sized trees, and less than 1% of herb diversity was explained by tree diversity. The shrub layer was by far the most species rich, with both a higher number of species per plot, and a higher Shannon diversity index, than the tree and the herb layer. More than 82% of tree species, 90% of shrubs, 78% of lianas and 70% of herbaceous species were recorded in the shrub layer. Moreover, shrubs contributed for 38% of the 114 strict and narrow endemic plant species recorded in the area, herbs 29%, trees only 20% and climbers 11%. These results indicate that the diversity of trees might not always reflect the overall diversity of the forest in the Campo-Ma’an area, and therefore it may not be a good indicator for the diversity of shrubs and herbaceous species. Furthermore, this suggests that biodiversity surveys based solely on large and medium sized tree species (DBH ≥0cm) are not an adequate method for the assessment of plant diversity because other growth form such as shrubs, climbers and herbs are under-represented. Therefore, inventory design based on small plots of 0.1 ha, in which all vascular plants with DBH ≥1 cm are recorded, is a more appropriate sampling method for biodiversity assessments than surveys based solely on large and medium sized tree species.  相似文献   

3.
不同植物类群物种丰富度垂直格局分形特征的比较   总被引:8,自引:0,他引:8       下载免费PDF全文
格局和过程一直是生态学的核心问题,该文应用“非布朗运动随机分形”模型,在北京东灵山远离人为干扰地区的阴坡设置了两条宽2 m的样带,描述和比较了暖温带落叶阔叶林区乔木、灌木、草本以及总的植物物种丰富度在不同尺度上沿海拔梯度变异特征,以及相关的生态过程。研究结果表明:1)直接梯度法刻画了植物物种丰富度在海拔梯度上的总体变化趋势,并不能从中获得更多的信息。“非布朗运动随机分形”模型揭示了不同尺度上物种丰富度的空间变化并能和生态过程相联系,研究表明该模型适合对乔木、灌木和草本植物物种丰富度的垂直梯度格局特征进行描述,但对总的植物物种丰富度有一定的局限性。2)乔木物种丰富度在海拔梯度上的变化主要受两种生态过程的控制,小尺度上分形维数接近于2,主要受独立的不具有长程相关的生态过程控制,呈近随机分布;大尺度上分形维数接近于1,主要受自相关范围大、具有长程关联特性的生态过程控制,随海拔上升呈近似单调下降的趋势。灌木和草本物种丰富度在海拔梯度上的变化主要受3种生态过程的控制,小尺度和大尺度上的特征与乔木相似;但在中等尺度上,分形维数接近于1.5,它们以近似布朗运动的形式变化。虽然乔木和灌木物种丰富度在海拔梯度上变化的尺度范围相似,但决定它们的主要生态过程完全不同,或相同的生态过程以截然不同的方式作用于两种不同的植物类群。总的植物物种丰富度在整个尺度范围内呈现标度不变性,这可能是由于决定其变化的生态过程作用尺度紧密相关,也可能因为该文研究范围的局限性。  相似文献   

4.
Testing the relations between tree parameters and the richness and composition of lichen communities in near-natural stands could be a first step to gather information for forest managers interested in conservation and in biodiversity assessment and monitoring. This work aims at evaluating the influence of tree age and age-related parameters on tree-level richness and community composition of lichens on spruce in an Alpine forest. The lichen survey was carried out in four sites used for long-term monitoring. In each site, tree age, diameter at breast height, tree height, the first branch height, and crown projection area were measured for each tree. Trees were stratified into three age classes: (1) <100 years old, immature trees usually not suitable for felling, (2) 100–200 years old, mature trees suitable for felling, and (3) >200 years old, over-mature trees normally rare or absent in managed stands. In each site, seven trees in each age class were selected randomly. Tree age and related parameters proved to influence both tree-level species richness and composition of lichen communities. Species richness increased with tree age and related parameters indicative of tree size. This relation could be interpreted as the result of different joint effects of age per se and tree size with its area-effect. Species turnover is also suspected to improve species richness on over-mature trees. Similarly to species richness, tree-level species composition can be partially explained by tree-related parameters. Species composition changed from young to old trees, several lichens being associated with over-mature trees. This pool of species, including nationally rare lichens, represents a community which is probably poorly developed in managed forests. In accordance to the general aims of near-to-nature forestry, the presence of over-mature trees should be enhanced in the future forest landscape of the Alps especially in protected areas and Natura 2,000 sites, where conservation purposes are explicitly included in the management guidelines.  相似文献   

5.
Aim To explore the variation in species richness along a subtropical elevation gradient, and evaluate how climatic variables explain the richness of the different life forms such as trees, shrubs, climbers, herbs and ferns. Location The study was made in a subtropical to warm temperate region in the south‐eastern part of Nepal, between 100 and 1500 m above sea level (a.s.l.). Methods The number of species was counted in six plots (50 × 20 m) in each of the 15 100 m elevation bands covering the main physiognomic structures along an imaginary transect. Each species recorded was assigned to a life form. Potential evapotranspiration (PET, i.e. energy), mean annual rainfall (MAR), and their ratio (MI = moisture index) were evaluated as explanatory variables by means of generalized linear models (GLM). Each variable was tested individually, and in addition MAR and PET were used to test the water‐energy dynamics model for each life form. Results The richness of herbaceous species, including herbaceous climbers, was unrelated to any of the climate variables. PET was strongly negatively correlated with elevation, and the following relationships were found between increasing PET and richness: (i) shrubs, trees and total species (sum of all life forms) showed unimodal responses (ii) ferns decreased monotonically, and (iii) woody climbers increased monotonically. Richness of all woody groups increased monotonically with MAR and MI. The water‐energy dynamics model explained 63% of the variation in shrubs, 67% for trees and 70% for woody species combined. Main conclusions For the various herbaceous life forms (forbs, grasses, and herbaceous climbers) we found no significant statistical trends, whereas for woody life forms (trees, shrubs, and woody climbers) significant relationships were found with climate. E.M. O’Brien's macro‐scale model based on water‐energy dynamics was found to explain woody species richness at a finer scale along this elevational‐climatic gradient.  相似文献   

6.
Design and establishment of ecologically good networks of conservation areas often requires quick assessments of their biodiversity. Reliable indicators would be useful when doing such assessments. In order to explore the potential indicators for species richness in boreal forests, we studied (1) the co-variation of species richness and composition of species assemblages among beetles, polypores, birds and vascular plants, (2) the relationships between species richness and four boreal forest site types, (3) the relationship between species richness and forest physical structure and (4) the suitability of potential indicator groups within the four taxa to predict the species richness generally. The data show that there are probably not a single taxonomic or forest structural characteristic to be used as a general biodiversity indicator or surrogate for all the species. The correlations in species richness among the four taxa studied were low. However, group-specific indicators were obvious: forest site type was a good surrogate for vascular plant richness, and quantity and quality of dead wood predicted the species richness of polypores. The results support the view that different indicators shall be used for different forest types and taxonomic groups. These indicators should facilitate relatively rapid methods to assess biodiversity patterns at the forest stand level.  相似文献   

7.
Knowing the global pattern of species diversity is a central goal of the science of ecology, and scaling laws can be useful for analysis of cross-scale biodiversity patterns. An elevational gradient in a warm temperate zone of the Donglingshan mountains (China) is used to test the scaling laws of species abundance distribution using multifractal analysis. We show that the power law scaling relationship holds for not just the classical SAR (species–area relationship for richness), but also for Shannon and Simpson diversity. In fact, we find power-laws in the generalized species abundance distribution at all stratal levels of the forest (trees, shrubs and herbs). The fact that these laws exist across a heterogeneous landscape representing a strong bioclimatic gradient suggests that biodiversity scaling laws may be more robust than previously thought.  相似文献   

8.
A botanical inventory and diversity of trees, shrubs (≥5 cm diameter at breast height [dbh]), herbs, climbers and lianas was assessed in plots (154) of 20 × 5 m in Mt. Marsabit forest, northern Kenya. We recorded 52 species of trees and shrubs, twelve species of herbs and six species of climbers and lianas. They belonged to 35 families and 64 genera. Rubiaceae was the richest family with nine species followed by Euphorbiaceae (six), Oleaceae (five), Rutaceae (four), Capparaceae, Labiatae and Leguminosae (three each). The rest of the families were represented by one or two species. Rinorea convallarioides (Bak.f.) Eyles ssp. marsabitensis Grey‐Wilson (Violaceae), an endemic species, and Drypetes gerrardii Hutch. (Euphorbiaceae), were the two most important species, accounting for more than third of the combined importance value. Species diversity indices were 2.735 (Shannon–Wiener), 0.88 (Simpson's) and 0.296 (Evenness). There was a strong evidence of disturbance arising from anthropogenic and wildlife foraging activities. This inventory has affirmed Mt. Marsabit forest as a unique habitat for several endemic, rare, threatened or vulnerable plant species, which should be conserved.  相似文献   

9.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

10.
Wood-decaying polypores are macrofungi with the capacity to decompose lignocellulose, and hence play essential roles in forest ecosystems. Host (tree species) range and preference are among the most important factors influencing polypore communities. Here, we studied polypore ecological patterns between gymnosperm and angiosperm trees based on data collected from more than 10 yr field investigations in Fenglin and Changbaishan Nature Reserve, northeast China (boreal and temperate zone). Although species richness was similar between the polypores associated with the two tree groups, gymnosperm trees showed: (1) a higher similarity in polypores species; (2) a lower polypore species richness on fallen trunks; (3) a lower polypore species richness in unprotected forests; (4) fewer common polypores but more occasional species; (5) a lower proportion of white rot but a higher proportion of brown rot polypores. In general, our findings supported previous views that different preferences between gymnosperm and angiosperm trees in polypores are probably caused by different structure and content of lignins between the two tree groups.  相似文献   

11.
Question: Thousands of small isolated forest fragments remain around churches (“church forests”) in the almost completely deforested Ethiopian Highlands. We questioned how the forest structure and composition varied with altitude, forest area and human influence. Location: South Gondar, Amhara National Regional State, Northern Ethiopia. Methods: The structure and species composition was assessed for 810 plots in 28 church forests. All woody plants were inventoried, identified and measured (stem diameter) in seven to 56 10 m x 10‐m plots per forest. Results: In total, 168 woody species were recorded, of which 160 were indigeneous. The basal area decreased with tree harvest intensity; understorey and middle‐storey density (<5 cm DBH trees) decreased with grazing; overstorey density (>5 cm DBH trees) increased with altitude. The dominance of a small set of species increased with altitude and grazing intensity. Species richness decreased with altitude, mainly due to variation in the richness of the overstorey community. Moreover, species richness in the understorey decreased with grazing intensity. Conclusions: We show how tree harvesting intensity, grazing intensity and altitude contribute to observed variations in forest structure, composition and species richness. Species richness was, however, not related to forest area. Our study emphasizes the significant role played by the remaining church forests for conservation of woody plant species in North Ethiopian Highlands, and the need to protect these forests for plant species conservation purposes.  相似文献   

12.
Most of the world’s terrestrial biome types can be found in China. To systematically investigate species composition and structure of China’s forest communities, we launched a long‐term project consisting forest vegetation surveys across China’s mountains in the mid 1990s. Over the study period, we have conducted vegetation surveys for 65 mountains and collected vegetation data from about 1500 forest plots, using consistent sampling protocols. In this paper we first introduce the aims, protocols, and major research themes of the project, and then describe the major characteristics of forest communities and their geographic patterns and climatic controls. As latitude increased, diameter at breast height (DBH) and height of trees increased, while individual density of trees and woody species richness decreased. Total basal area (TBA) of trees and species richness of herbs did not vary with latitude. Contemporary climate seems to drive these patterns: temperature was the leading factor for DBH, precipitation was most important for tree height and individual density, actual evapotranspiration (a surrogate of productivity) determined woody (trees and shrubs) species richness, and rainfall was the major controller of the herb species richness. The species–abundance relationship showed that species dominance (measured by the number of individuals per species) declined significantly from boreal forests to evergreen broadleaf forests from north to south. Our results are in line with the idea that productivity drives woody species richness. Similarly, we find that biomass (measured as TBA) is invariant along the environmental gradients. However, individual density varies dramatically, in contrast to the assumptions underlying the metabolic theory of ecology.  相似文献   

13.
Floristic surveys were performed in 17 traditional cocoa forest gardens under different management regimes in the humid forest area of southern Cameroon, to assess the impact of intensification on plant biodiversity. This impact was evaluated by analyzing species richness, vegetation structure, carbon sequestration and above ground biomass. We hypothesize that: (a) plant (tree and herbs) species richness is negatively correlated to management intensity and (b) vegetational density predictably change with management intensity. Our results show that management as practiced in traditional cocoa forest gardens in southern Cameroon following a gradient of intensification from extensive cocoa forest gardens with high floristic diversity to intensive ones strongly impacts plant diversity, plant biomass and to some extend carbon storage with possible negative consequences on biodiversity. Great differences in species richness, species composition, and, for trees, diameter at breast height and basal area were evident among the five types of traditional cocoa forest garden systems investigated. In terms of plant species richness, we found a decreasing gradient of plant species numbers from extensive forest gardens to intensive ones. This study also highlights the importance of the Management Index for quantifying differences in the management; this index could be used to standardize certification procedures and assess conservation progress and success. Our findings support the idea that traditional cocoa forest gardens can help to protect many forest species, sustains smallholder production and offer more scope for conservation of biodiversity, at both species-level and landscape-level. Moreover, diverse traditional cocoa forest gardens may help in regulating pests and diseases and allow for efficient adaptation to changing socioeconomic conditions.  相似文献   

14.
三江并流地区干旱河谷植物物种多样性海拔梯度格局比较   总被引:1,自引:0,他引:1  
在滇西北三江并流地区典型干旱河谷段, 在怒江、澜沧江和金沙江的东、西坡共设置了6条海拔梯度样带, 通过标准样地的植物群落调查, 分析各条样带植物的物种丰富度、物种更替率的海拔梯度格局, 并比较了地理和植被变量对分布格局的解释。干旱河谷植被带位于海拔3,000 m以下, 以灌丛和灌草丛为主, 其在各河谷的分布上限自西向东依次升高。植物物种丰富度的分布主要与海拔、流域、经纬度和植被带有关, 沿纬度和海拔梯度升高而显著增加的格局主要表现在草本层和灌木层, 灌木物种丰富度还呈现自西向东显著增加的趋势。怒江的灌木和草本种物种丰富度显著高于金沙江和澜沧江, 三条江的乔木种丰富度差异则不显著。森林带的样方草本物种丰富度显著低于灌草丛带样方, 并且还拥有后者没有的乔木种。不同样带的植物物种更替速率呈现了不一致的海拔梯度格局, 但均在样带海拔下部的灌草丛群落与海拔上部森林群落之间的交错带出现峰值。森林-灌草丛植被交错带在怒江样带处于海拔1,900-2,100 m处, 在澜沧江河谷位于海拔2,300-2,400 m, 在金沙江河谷位于海拔2,700-2,900 m。所有海拔样带的森林段或灌草丛段相对于同一样带不同植被段之间的物种更替程度为最小, 不仅小于同一流域不同样带相同植被段之间物种更替率的均值, 更小于所有样带相同植被段之间的更替率均值。在三条河流6条海拔样带的12个植被带段之间的物种更替变化中, 空间隔离因素可以解释34.2%, 而植被类型差异仅能解释不到0.5%。本研究结果显示了环境差异对不同植被类型物种丰富度的首要影响, 和各河流之间的空间隔离对植物群落构建和物种构成的主要作用。  相似文献   

15.
Species richness and density of understory plants were investigated in eight 1 ha plots, distributed one each in undisturbed and disturbed tropical evergreen, semi-evergreen, deciduous and littoral forests of Little Andaman island, India, which falls under one of the eight hottest hotspots of Biodiversity in the world viz. the Indo-Burma. One hundred 1 m−2 quadrats were established in each 1 ha plot, in which all the understory plants (that include herbs, undershrubs, shrubs and herbaceous climbers) were enumerated. The total density of understory plants was 6,812 individuals (851 ha−1) and species richness was 108 species, representing 104 genera and 50 families. Across the four forest types and eight study plots, the species richness ranged from 10 to 39 species ha−1. All the disturbed sites harbored greater number of species than their undisturbed counterparts. Herbs dominated by species (63%) and density (4,259 individuals). The grass Eragrostis tenella (1,860 individuals; IVI 40), the invasive climber Mikania cordata (803; IVI 20) and the shrub Anaxagorea luzonensis (481; IVI 17.5) were the most abundant species. Poaceae, Asteraceae, Acanthaceae, Orchidaceae and Euphorbiaceae constituted the species-rich families represented by 6 species each. The species-area curves attained an asymptote at 0.8 ha level except in sites DD and DL, indicating 1 ha plot is not sufficient to capture all the understory species in disturbed forests. The alien weeds formed about one-fourth of the species richness (31 species; 28%) and density (1,926 individuals; 28.3%) in the study sites, indicating the extent of weed invasion and the attention required for effective conservation of the native biodiversity of the fragile island forest ecosystem.  相似文献   

16.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

17.
Question: Can augmented forest stand complexity increase understory vegetation richness and cover and accelerate the development of late‐successional features? Does within‐stand understory vegetation variability increase after imposing treatments that increase stand structural complexity of the overstory? What is the relative contribution of individual stand structural components (i.e. forest matrix, gaps, and leave island reserves) to changes in understory vegetation richness? Location: Seven study sites in the Coastal Range and Cascades regions of Oregon, USA. Methods: We examined the effects of thinning six years after harvest on understory plant vascular richness and cover in 40‐ to 60‐year‐old forest stands dominated by Douglas‐fir (Pseudotsuga menziesii). At each site, one unthinned control was preserved and three thinning treatments were implemented: low complexity (LC, 300 trees ha?1), moderate complexity (MC, 200 trees ha?1), and high complexity (HC, variable densities from 100 to 300 trees ha?1). Gaps openings and leave island reserves were established in MC and HC. Results: Richness of all herbs, forest herbs, early seral herbs and shrubs, and introduced species increased in all thinning treatments, although early seral herbs and introduced species remained a small component. Only cover of early seral herbs and shrubs increased in all thinning treatments whereas forest shrub cover increased in MC and HC. In the understory, we found 284 vascular plant species. After accounting for site‐level differences, the richness of understory communities in thinned stands differed from those in control stands. Within‐treatment variability of herb and shrub richness was reduced by thinning. Matrix areas and gap openings in thinned treatments appeared to contribute to the recruitment of early seral herbs and shrubs. Conclusions: Understory vegetation richness increased 6 years after imposing treatments, with increasing stand complexity mainly because of the recruitment of early seral and forest herbs, and both low and tall shrubs. Changes in stand density did not likely lead to competitive species exclusion. The abundance of potentially invasive introduced species was much lower compared to other plant groups. Post‐thinning reductions in within‐treatment variability was caused by greater abundance of early seral herbs and shrubs in thinned stands compared with the control. Gaps and low‐density forest matrix areas created as part of spatially variably thinning had greater overall species richness. Increased overstory variability encouraged development of multiple layers of understory vegetation.  相似文献   

18.
《Acta Oecologica》2007,31(2):137-150
We examined the influence of disturbance history on the floristic composition of a single community type in karri forest, south-western Australia. Cover-abundance of 224 plant species and six disturbance and site-based environmental variables were recorded in 91, 20 m × 20 m quadrats. Numerical taxonomic and correlation approaches were used to relate these and 10 plant species-group variables based on origin, growth form and fire response. Ordination revealed no discernable pattern of sites based on floristic composition. However, all 10 species-group variables were significantly correlated with the ordination axes. Species richness within these groups varied with category and with respect to many of the disturbance and site variables. We encountered low diversity of vascular plants at the community level and limited diversity of growth forms. Thus most species were herbs (62.1%) or shrubs (30.3%), and there were no epiphytes and few species of trees or climbers. Although many introduced species were recorded (18.3% of all taxa), virtually all (83%) were herbs that demonstrated little persistence in the community, and there was limited evidence of transformer species. Time-since-fire (and other disturbance) influenced species richness more than the number of recent past fires because of a high proportion of ephemerals associated with the immediate post-fire period. Long-lived shrubs with soil stored seed dominate numerically, and in understorey biomass in comparison with neighboring vegetation types because of their greater flexibility of response following irregular, but intense disturbance events. However, interactions between nutrient status, regeneration mechanisms and community composition may be worthy of further investigation.  相似文献   

19.
This study was conducted in the Chiapas Highlands, a tropical mountain region where traditional agricultural practices have resulted in a mosaic landscape of forest fragments embedded in a matrix of secondary vegetation and crop fields. The question addressed was how may woody species richness be affected by forest fragment attributes derived from traditional land-use patterns. Species inventories of total woody species, canopy and understorey trees, and shrubs were obtained in 22 forest fragments (5 ha). Multiple regression analyses were applied to examine the effects of size, matrix, isolation and shape of the forest fragments on richness of these species guilds. Fragment size was correlated with shape (r = 0.75) and isolation (r = –0.69), and isolation was correlated with shape (r = –0.75). Total species richness, and number of shrubs and understorey trees in fragments were related to isolation; moreover, additive effects of fragment shape were found for shrubs. The number of canopy species was not related to any fragment variable. Matrix did not help to explain species richness, possibly due to the landscape structure created by the traditional land-use patterns. In addition to size and isolation, we point out the need of considering shape and matrix as additional fragmentation attributes, along with social and economic factors, if we are ever going to be successful in our management and conservation actions.  相似文献   

20.
古田山不同干扰程度森林的群落恢复动态   总被引:1,自引:0,他引:1  
森林采伐后次生林的恢复过程对于生物多样性的保护和生态系统功能的重建具有重要意义。作者以古田山不同干扰程度的12个1 ha 森林样地为研究对象, 运用群落多元统计方法, 探讨了自然恢复过程中森林群落组成及物种多样性的动态变化及趋势。结果表明: 不同恢复阶段森林样地的群落组成存在显著性差异, 而同一恢复阶段的样地具有高度的相似性。物种丰富度随恢复进程有增加的趋势, 但各阶段差异并不显著; 物种均匀度除人工林较低以外, 其他恢复阶段之间无显著性差异。不同恢复阶段研究样地的群落组成及物种多样性的差异主要存在于林冠层。灌木及更新层具有各自的指示种, 人工林的指示种为落叶灌木或阳性乔木, 幼龄次生林的指示种为常绿灌木或小乔木, 老次生林的指示种为亚乔木层常绿树种, 老龄林的指示种为林冠层树种。上述结果表明古田山不同人为干扰程度森林群落的物种多样性具有较强的自我恢复能力。尽管物种组成难以预测, 但处于同一恢复阶段的森林, 其幼树的生活型组成呈现出一致的变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号