首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies have been made on the activity of sorbitol dehydrogenase and glucose-6-phosphate dehydrogenase in the liver of hibernating ground squirrels. It was found that the activity of the former is an order higher than that of the latter. Contribution of sorbitol pathway in total metabolism of the glucose in hibernating ground squirrels is discussed.  相似文献   

2.
1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25 degrees C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD-isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP-malate dehydrogenase (11.0), ATP-citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP-isocitrate dehydrogenase (3.7), NAD-malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109mug/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3-6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP-citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.  相似文献   

3.
Activities of hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PDH), fructose-6-phosphate kinase (F6PK), glutamate dehydrogenase (GlutDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH) and glycerol-3-phosphate dehydrogenase (GPDH) were determined in tissue extracts of testes and ovaries of adult Dipetalogaster maximus (Uhler) and Triatoma infestans (Klug) (Hemiptera: Reduviidae), insect vectors of Chagas disease. The fine structure organization of the same organs were studied by electron microscopy. Results allow the following inferences: in testes from both species, most of the glucose would be utilized through the glycolytic pathway. Amino acid catabolism for energy purposes appears to be unimportant. The number of mitochondria and the development of the rough endoplasmic reticulum in cells of the spermatogenic line indicate the occurrence of active oxidative metabolism and protein synthesis; in ovaries, levels of G6PDH indicate the existence of an active pentose pathway which would supply the NADPH required for fat and ecdysteroid synthesis. Amino acid catabolism appears to be relatively more important in ovary than in testis. Fat and glycogen are stored in follicular cells of D. maximus; oocytes of both species contain numerous fat droplets. Abundant mitocondria are present in follicular cells and oocytes. A well developed rough endoplasmic reticulum and free ribosomes are also conspicuous in these cells. The malate/aspartate H-transfer system seemed to be relatively more important than the glycerophosphate shuttle in ovaries as well in testes.  相似文献   

4.
In experiments on the arctic ground squirrel C. parryi, studies have been made on seasonal changes in the weight of testes, follicular diameter in the ovaries and the content of sex and gonadotropic hormones in the peripheral blood. Testicular involution and arrest of follicular development were observed in prehibernation period. During hibernation, follicular growth and the increase in the weight of testes take place. The level of LH decreases during hibernation. In sleeping animals, its level is higher as compared to that in active animals during short periods of arousal. The increase in LH level takes place both in males and females in April. FSH can not be detected in males during the first half of hibernation, appearing in the peripheral blood only in March and April. In females, FSH was found in the blood in October, being absent from November to January; beginning from February, it may be found both in sleeping and active animals. Testosterone was found in hibernating males and females, its level significantly increased in March in males, being approximately constant in hibernating females. Estradiol secretion was noted in hibernating females, whereas progesterone was found in the blood only in May.  相似文献   

5.
1. Enzyme activities (units/g wet wt.) were determined in the caput and cauda epididymidis and in epididymal spermatozoa of the rat. 2. The activity of most enzymes in the cauda was between 50 and 100% of that in the caput, except that ATP citrate lyase was barely detectable in the cauda. 3. Spermatozoa, unlike epididymal tissue, contained sorbitol dehydrogenase but lacked ATP citrate lyase. NADP+-malate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, succinate dehydrogenase, carnitine acetyltransferase and citrate synthase were 5 to 400 times as active in spermatozoa as in epididymal tissue. 4. 2-Oxoglutarate dehydrogenase was the least active member of the tricarboxylic acid cycle in all tissues and most closely matched the measured flux through the cycle. 5. The concentrations of hydroxyacyl-CoA dehydrogenase and carnitine palmitoyltransferase were equivalent to the more active enzymes of the tricarboxylic acid cycle, indicating the capacity for extensive lipid oxidation, and the presence of 3-hydroxybutyrate dehydrogenase suggests that these tissues can also oxidize ketone bodies. 6. Transfer of reducing equivalents from cytoplasm to mitochondrion is unlikely to occur by means of the glycerol phosphate cycle because mitochondrial glycerol 3-phosphate dehydrogenase is relatively inactive in epididymal tissue, whereas the cytoplasmic enzyme has little activity in spermatozoa, but transfer may be accomplished by the malate-aspartate shuttle. 7. Transfer of acetyl units from mitochondrion to cytoplasm could be effected by the pyruvate-malate cycle in the caput of androgen-maintained rats, but not in the other tissues because of the low activity of ATP citrate lyase. Acetyl unit transfer could take place via acetylcarnitine, mediated by carnitine acetyltransferase. 8. Castration resulted in a decrease in the concentration of nearly all enzymes, although subsequent administration of testosterone restored concentrations to values similar to those in animals maintained by endogenous androgen. The extent to which enzyme concentration was changed by an alteration in androgen status was highly variable, but was most marked in the case of pyruvate carboxylase.  相似文献   

6.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

7.
Peroxisomes from Tetrahymena pyriformis contained catalase, d-amino acid oxidase, cyanide-insensitive fatty acyl-CoA oxidizing system, carnitine acetyltransferase, isocitrate lyase, leucine:glyoxylate aminotransferase and phenylalanine:glyoxylate aminotransferase. These activities, except carnitine acetyltransferase, were found at the highest levels in the light mitochondrial fraction, whereas the highest activity of carnitine acetyltransferase was found in the micotchondrial fraction. Sucrose density gradient centrifugation showed that the density of peroxisomes was approx. 1.228 g/ml and that of mitochondria was approx. 1.213 g/ml. When the light mitochondrial fraction was treated with deoxycholate or by freeze-thawing, most of the activities of catalase and isocitrate lyase were solubilized, whereas about half of the original activity of aminotransferase remained in the pellet fraction. Addition of fatty acid and clofibrate increased the activities of the cyanide-insensitive fatty acyl-CoA oxidizing system and isocitrate lyase in the peroxisomes. The activity of catalase was slightly increased by glucose and clofibrate; leucine:glyoxylate aminotransferase activity was significantly increased by clofibrate treatment.  相似文献   

8.
Summary The synthesis of glucose catabolizing enzymes is under inductive control inPseudomonas putida. Glucose, gluconate and 2-ketogluconate are the best nutritional inducers of these enzymes. Mutants unable to catabolize gluconate or 2-ketogluconate synthesized relatively high levels of glucose dehydrogenase and gluconate-6P dehydrase activities when grown in the presence of these substrates. This identifies both compounds as true inducers of these enzymes. KDGP aldolase is induced by its substrate, as evidenced by the inability of mutant cells unable to form KDGP to produce this enzyme at levels above the basal one. A 3-carbon compound appears to be the inducer of glyceraldehyde-3P dehydrogenase. This pattern of regulation suggests that there is a low degree of coordinate control in the synthesis of the glucolytic enzymes byP. putida. This is also supported by the lack of proportionality found in the levels of two enzymes governed by the same inducers, glucose dehydrogenase and gluconate-6P dehydrase, in cells grown on different conditions.Abbrevitions P phosphate - KDGP 2-Keto-3-deoxygluconate-6-phosphate - GDH glucose dehydrogenase - GNDH gluconate dehydrogenase - GK glucokinase - GNK gluconokinase - KGK ketogluconokinase - KGR 2-Ketogluconate-6-phosphate reductase - GPDH glucose-6-phosphate dehydrogenase - GNPD gluconate-6-phosphate dehydrase - KDGPA 2-Keto-3-deoxygluconate-6-phosphate aldolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase  相似文献   

9.
The route of ethanol formation in Zymomonas mobilis   总被引:5,自引:2,他引:5  
1. Enzymic evidence supporting the operation of the Entner-Doudoroff pathway in the anaerobic conversion of glucose into ethanol and carbon dioxide by Zymomonas mobilis is presented. 2. Cell extracts catalysed the formation of equimolar amounts of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate. Evidence that 3-deoxy-2-oxo-6-phosphogluconate is an intermediate in this conversion was obtained. 3. Cell extracts of the organism contained the following enzymes: glucose 6-phosphate dehydrogenase (active with NAD and NADP), ethanol dehydrogenase (active with NAD), glyceraldehyde 3-phosphate dehydrogenase (active with NAD), hexokinase, gluconokinase, glucose dehydrogenase and pyruvate decarboxylase. Extracts also catalysed the overall conversion of glycerate 3-phosphate into pyruvate in the presence of ADP. 4. Gluconate dehydrogenase, fructose 1,6-diphosphate aldolase and NAD-NADP transhydrogenase were not detected. 5. It is suggested that NAD is the physiological electron carrier in the balanced oxidation-reduction involved in ethanol formation.  相似文献   

10.
Few data are available on enzyme activity in amphibian plasma or erythrocytes. We measured the activity of several blood enzymes in the urodele amphibian Pleurodeles waltl reared under standard laboratory conditions. In subsequent experiments, we will estimate and compare the physiological and biochemical conditions of P. waltl when reared under extreme temperature or microgravity conditions. The enzymes selected were glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, superoxide dismutase, catalase, isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase. In fresh plasma samples, enzyme activity in females was higher than in males, except for aspartate and alanine aminotransferases, which were equivalent in females and males. Glutamate dehydrogenase activity was higher in males than in females. In female erythrocytes, the activity of all enzymes was higher than in male erythrocytes. We have also studied the storage conditions of samples and observed that for most enzymes, the activity in freshly isolated plasma and erythrocyte preparations decreased after storage at -18 or +4 degrees C.  相似文献   

11.
Glucose-6-phosphate dehydrogenase has been purified 1000-fold from pig liver. This enzyme exists as an active dimer of molecular weight 133,000 and an inactive monomer of molecular weight 67,500. The pH of maximum activity is 8.5 and the ionic strength maximum is 0.1 to 0.5 M. Glucose-6-phosphate dehydrogenase is highly specific for NADP+ and glucose 6-phosphate. Apparent Km values of 3.6 muM and 5.4 muM were obtained for glucose 6-phosphate and NADP+. This enzyme is located almost entirely within the soluble portion of the cellular cytoplasm.  相似文献   

12.
Water Relations of Glucose-catabolizing Enzymes in Pseudomonas fluorescens   总被引:2,自引:2,他引:0  
Examination of the catabolism of glucose via the Entner-Doudoroff pathway by standard enzyme assays showed that the activity of glucose-6-phosphate dehydrogenase, glucokinase and 2-ketoglu-conokinase plus phosphoketogluconate reductase was completely inhibited at a w values less than 0.965, 0.98 and 0.96 respectively when NaCl was used to adjust the a w. The other glucose-catabolizing enzymes were inhibited to a lesser degree. When sucrose was used to control a w, glucokinase and glucose-6-phosphate dehydrogenase were inhibited at 0.92 a w but the other enzymes remained active below 0.86 a w. Enzymes were relatively active at reduced a w when adjusted with glycerol and most remained active even at 0.80 a w. When a w was controlled by potassium glutamate, the activity of glucokinase and glucose-6-phosphate dehydrogenase was markedly less inhibited than by NaCl at similar a w. Possible reasons for the variation in activity by glucose-catabolizing enzymes in response to a w controlled by various solutes could be location of the enzyme in the cell, ability of the solute to penetrate the cell and ability to withstand high salt and sucrose concentrations. When the a w of the growth medium was reduced to 0.98 by glycerol, NaCl and polyethylene glycol 400, levels of glucokinase were significantly reduced while higher levels of glucose dehydrogenase and gluconate dehydrogenase were induced. This suggests that reduction in a w could regulate the routes of catabolism in the Entner-Doudoroff pathway. When sucrose was used to control a w of the growth medium high levels of most enzymes were induced, suggesting catabolism of the sucrose by the organism.  相似文献   

13.
Culture of rat hepatocytes with etomoxir, an inhibitor of carnitine palmitoyltransferase I (CPT I), for 48 h, resulted in increased carnitine acetyltransferase (CAT) activity (74%), a marked decrease in CPT activity (82%) measured in detergent extracts, and increased activities of glucose-6-phosphate dehydrogenase (227%) and fructose-1,6-bisphosphatase (65%). Changes in CAT and CPT activities were not observed after 4 h culture with etomoxir. When hepatocytes were cultured with etomoxir and benzafibrate (a hypolipidaemic analogue of clofibrate) for 48 h, etomoxir prevented the 5-fold increase in CAT activity caused by bezafibrate, whereas bezafibrate suppressed the increase in glucose-6-phosphate dehydrogenase and fructose-bisphosphatase caused by etomoxir. However, bezafibrate did not prevent the suppression of CPT activity by etomoxir. Etomoxir inhibited palmitate beta-oxidation and ketogenesis after short-term (0-4 h) and long-term (48 h) exposure, but it caused accumulation of triacylglycerol in hepatocytes only after short-term exposure (0-4 h). These effects of etomoxir on fatty acid metabolism and suppression of CPT (after 48 h) were similar in periportal and perivenous hepatocytes, but the increases in CAT and glucose-6-phosphate dehydrogenase activities were higher in periportal than in perivenous cells. The effects of CPT I inhibitors on CAT activity and long-term suppression of CPT activity are probably mediated by independent mechanisms.  相似文献   

14.
To investigate the physical and kinetic properties of sperm carnitine acetyltransferase, the enzyme was purified from bovine spermatozoa and heart muscle. Carnitine acetyltransferase was purified 580-fold from ejaculated bovine spermatozoa to a specific activity of 85 units/mg protein (95% homogeneity). Sperm carnitine acetyltransferase was characterized as a single polypeptide of Mr 62,000 and pI 8.2. Heart carnitine acetyltransferase was purified 650-fold by the same procedure to a final specific activity of 71 units/mg protein. The kinetic properties of purified bovine sperm carnitine acetyltransferase were consistent with the proposed function of this enzyme in acetylcarnitine pool formation. Product inhibition by either acetyl-l-carnitine or CoASH was not sufficient to predict significant in vivo inhibition of acetyl transfer. At high concentrations of l-carnitine, bovine sperm and heart carnitine acetyltransferases were most active with propionyl- and butyryl-CoA substrates, although octanoyl-, iso-butyryl-, and iso-valeryl-CoA were acceptable substrates. Binding of one substrate was enhanced by the presence of the second substrate. Carnitine analogs that have significance in reproduction, such as phosphorylcholine and taurine, did not inhibit carnitine acetyltransferase. Bovine sperm and heart carnitine acetyltransferases were indistinguishable on the basis of purification behavior, pI, pH optima, kinetic properties, acyl-CoA specificity, and sensitivity to sulfhydryl reagents and divalent cations; thus there was no indication that bovine sperm carnitine acetyltransferase is a sperm-specific isozyme.  相似文献   

15.
Control of the activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malate dehydrogenase was investigated in intact rats and in hepatocyte cultures. 1) Adult females had 2-fold greater activities of hepatic glucose-6-phosphate- and 6-phosphogluconate dehydrogenases than adult males, but similar activities of malate dehydrogenase. Castrated males showed decreased activities of all three enzymes in comparison to age- and weight-matched intact controls. In starved animals the activities of all three enzymes decreased significantly. After refeeding with nonpurified diet the activities returned to the prestarved levels in females, but increased to clearly higher values in intact and castrated males. 2) Estrogen levels were in the same range in immature and adult male and female rats. Testosterone levels were highest in adult males, clearly lower in adult females (1/8) and immature males (1/8), still lower in immature females (1/15) and lowest in castrated males (1/40). A simple correlation of the sex differences in these hormone levels to sex differences in glucose-6-phosphate- and 6-phosphogluconate dehydrogenase activities was not apparent. 3) In serum-free, dexamethasone-supplemented 48-h cultures of hepatocytes from both male and female rats the basal activities of glucose-6-phosphate dehydrogenase were the same; they were increased 2-3 fold by insulin alone, 1.5 fold by estrogen alone and 4-5 fold by insulin plus estrogen. Apparently sex differences did not persist in 48-h cell cultures. 4) In 48-h cultures of male hepatocytes, then used as the experimental model, insulin alone increased the activity not only of glucose-6-phosphate dehydrogenase but also of 6-phosphogluconate and malate dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the present study, we have tested the beneficial effects of forskolin in protecting the mancozeb‐induced reproductive toxicity in rats. Adult male Wistar rats were exposed to either mancozeb (500 mg/kg body weight/day) or forskolin (5 mg/kg body weight/day) or both for 65 days and analyzed for spermatogenesis and steroidogenesis and testicular and epididymal oxidative toxicity. A significant decrease in daily sperm production, epididymal sperm count, motile, viable, and hypo‐osmotic swelling‐tail swelled sperm was observed in mancozeb‐treated rats. The activity levels of testicular 3β‐hydroxysteroid dehydrogenase and 17β‐hydroxysteroid dehydrogenase and circulatory testosterone levels were significantly decreased in mancozeb‐treated rats. Exposure to mancozeb resulted in a significant decrease in glutathione levels and superoxide dismutase and catalase activity levels with an increase in lipid peroxidation levels in the testes and epididymis. Coadministration of forskolin mitigated the mancozeb‐induced oxidative toxicity and suppressed steroidogenesis and spermatogenesis.  相似文献   

17.
Oral administration of carnitine in normal and diabetic subjects showed a marked decrease in the level of blood glucose during the oral glucose tolerance test (OGTT) except for the three hour samples in diabetic subjects, while a decrease in the level of subsequent blood pyruvate samples was observed during the OGTT in normal and diabetic subjects after the administration of carnitine. During the OGTT, the peak of blood glucose and blood pyruvate level was generally delayed in the diabetic subjects. Furthermore, the mean blood pyruvate levels were elevated above those of normal subjects during the late stages of the test. The mean levels of blood glucose and blood pyruvate of all samples after the administration of carnitine were significantly higher in diabetics than the corresponding values in noramls. Carnitine administration decreased the total blood amino acid nitrogen level only in diabetic subjects. Carnitine caused a highly significant increase in the activity of serum alanine aminotransferase in normal and diabetic subjects, while it had no effect on the activity of serum aspartate aminotransferase. In goats, the level of blood glucose during the intravenous glucose tolerance test (IVGTT) was not affected by carnitine (1,3 or 6 mg/kg body weight). Carnitine in all doses used had no effect on the total blood amino acid nitrogen during the IVGTT, or on the activity of serum alanine aminotransferase and serum aspartate aminotransferase in the fasting samples. Acetyl-D,L-beta-methylcholine had no effect on the level of blood glucose, total blood amino acid nitrogen, the activity of serum alanine aminotransferase or serum aspartate aminotransferase in normal and diabetic subjects. The level of blood pyruvate decreased both in normal and diabetic subjects, in the samples that represented the peak of the curve. Glycine betaine had no effect on blood glucose, pyruvate, total blood amino acid nitrogen and the activity of serum alanine aminotransferase or serum aspartate amino transferase in normal and diabetic subjects or in goats.  相似文献   

18.
The 50% ethanolic extract of the root bark of C. odorata administered orally at the dose of 1g/kg body weight/day for 60 days resulted in decreased epididymal sperm motility and sperm count in male albino rats. Morphological abnormalities were also observed in the sperms. The testicular glycogen, the activities of 3beta hydroxy steroid dehydrogenase, glucose 6-phosphate dehydrogenase, malic enzyme, sorbitol dehydrogenase in seminal vesicle, fructose in seminal plasma and serum testosterone were significantly decreased in treated group. While testicular cholesterol level, the concentration of the fecal bile acids, urinary excretion of 17 ketosteroids, the activities of 17beta hydroxy steroid dehydrogenase, epididymal lactate dehydrogenase and that of testicular HMG CoA reductase were increased in treated group when compared to control. The results suggest that the ethanolic extract of C. odorata possesses the spermatotoxic effects in male albino rats.  相似文献   

19.
Effect of Estrogen on Denervated Muscle   总被引:2,自引:2,他引:0  
Abstract: The rate of increase of glucose 6-phosphate dehydrogenase activity in denervated rat extensor digitorum longus muscle shows sexual dimorphism. This phenomenon is further investigated in this report by assessing the effects of ovariectomy, hypophysectomy, hormone replacement therapy, and treatment with an estrogen antagonist, MER-25. The data demonstrate that physiologic doses of estrogens enhance the rate and extent of the increase in glucose 6-phosphate dehydrogenase activity after denervation. The data further indicate that aromatization of androgens may be a significant source of estrogen involved in hormonal modulation of the neural control of glucose 6-phosphate dehydrogenase and other processes in muscle. Furthermore, choline acetyltransferase activity, a marker for the neuromuscular synapse, decreased in rat extensor digitorum longus muscles after denervation, but was unaffected by ovariectomy.  相似文献   

20.
1. Glucose 6-phosphate dehydrogenase from Eimeria stiedai does not reduce NAD or any of its analogs tested. It does reduce NADP and its thionicotinamide and 3-acetylpyridine analogs. 2. It will accept D-glucose as substrate, but not 2-deoxy-D-glucose, glucose 1-phosphate, or 2-deoxy-D-glucose 6-phosphate. 3. Its response to a number of compounds that activate or inhibit the enzyme from other organisms has been determined. 4. The molecular weight is ca. 240,000 by gel chromatography, and only one isoenzyme could be detected by disc electrophoresis. 5. The enzyme resists conditions that commonly cause dissociation to lighter weight active forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号