首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of yeast to synthesize α-ketoglutaric acid (KGA) from ethanol has been studied. Thiamine-auxotrophic yeasts of different genera and species may be able to produce KGA; the main condition of synthesis is growth limitation by thiamine. Using a model culture, mutant Yarrowia lipolytica N 1, the principal conditions affecting KGA oversynthesis were identified. These were: thiamine concentration in medium and in cells, nitrogen and oxygen concentration in medium, and pH level. A KGA concentration of 49 g/l and a yield from ethanol consumed of 42% were achieved. Based on the results of the analysis of the activities of the key enzymes participating in ethanol metabolism and KGA synthesis, a concept of the mechanism of KGA biosynthesis by Y. lipolytica yeast is suggested and discussed. Received: 1 March 1999 / Received revision: 28 June 1999 / Accepted: 5 June 1999  相似文献   

2.
Overproduction and secretion of α-ketoglutaric acid by microorganisms   总被引:1,自引:0,他引:1  
This mini-review presents a summary of research results of biotechnological production of alpha-ketoglutaric acid (KGA) by bacteria and yeasts. KGA is of particular industrial interest due to its broad application scope, e.g., as building block chemical for the chemical synthesis of heterocycles, dietary supplement, component of infusion solutions and wound healing compounds, or as main component of new elastomers with a wide range of interesting mechanical and chemical properties. Currently KGA is produced via different chemical pathways, which have a lot of disadvantages. As an alternative several bacteria and yeasts have already been studied for their ability to produce KGA as well as for conditions of overproduction and secretion of this intermediate of the tricarboxylic acid cycle. The aim of this mini-review was to summarize the known data and to discuss the potentials of biotechnological processes of KGA production.  相似文献   

3.
The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l?1 of KGA with mass yield of 0.95 g g?1. KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8–3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.  相似文献   

4.
5.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric, isocitric, pyruvic (PA), and α-ketoglutaric (KGA) acids, triggered by growth limitation and excess of carbon source. This is leading to an increased interest in this non-conventional yeast for biotechnological applications. To improve the KGA production by Y. lipolytica for an industrial application, it is necessary to reduce the amounts of by-products, e.g., fumarate (FU) and PA, because production of by-products is a main disadvantage of the KGA production by this yeast. We have examined whether the concentration of secreted organic acids (main product KGA and PA as major by-product and FU, malate (MA), and succinate (SU) as minor by-products) can be influenced by a gene-dose-dependent overexpression of fumarase (FUM) or pyruvate carboxylase (PYC) genes under KGA production conditions. Recombinant Y. lipolytica strains were constructed, which harbor multiple copies of the respective FUM1, PYC1 or FUM1, and PYC1 genes. Overexpression of the genes FUM1 and PYC1 resulted in strongly increased specific enzyme activities during cultivation of these strains on raw glycerol as carbon source in bioreactors. The recombinant Y. lipolytica strains showed different product selectivity of the secreted organic acids KGA, PA, FU, MA, and SU. Concentrations of the by-products FU, MA, SU, and PA decreased significantly at overproduction of FUM and increased at overproduction of PYC and also of FUM and PYC simultaneously. In contrast, the production of KGA with the multicopy strains H355A(FUM1) and H355A(FUM1-PYC1) was comparable with the wild-type strain H355 or slightly lower in case of H355(PYC1). KGA productivity was not changed significantly compared with strain H355 whereas product selectivity of the main product KGA was increased in H355A(FUM1).  相似文献   

6.
l-Norephedrine, a natural plant alkaloid, possesses similar activity as ephedrine and can be used as a vicinal amino alcohol for the asymmetric synthesis of a variety of optically pure compounds, including pharmaceuticals, fine chemicals, and agrochemicals. Because of the existence of two asymmetric centers, efficient synthesis of l-norephedrine has been challenging. In the present study, an R-selective pyruvate decarboxylase from Saccharomyces cerevisiae and an S-selective ω-transaminase from Vibrio fluvialis JS17 were coupled to develop a sequential process for the stereoselective biosynthesis of l-norephedrine. After systematic optimization of the reaction conditions, a green, economic, and practical biocatalytic method to prepare l-norephedrine was established to achieve de and ee values of greater than 99.5 % and a molar yield over 60 %. The present coupling approach can facilitate the development of sequential reactions by various biocatalysts.  相似文献   

7.
A large body of evidence exists suggesting that polyamines can play essential roles in cellular growth and differentiation. We examined the ability of -difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, the major rate-limiting enzyme in polyamine biosynthesis, to inhibit the growth of Candida albicans, C. tropicalis, and C. parapsilosis. Substantial growth-inhibition was observed for all three species at DFMO concentrations ranging from 1 to 100 mM. C. tropicalis was significantly more susceptible to DFMO than C. albicans or C. parapsilosis. Depletion of cellular polyamine pools was seen in all 3 species following exposure to DFMO and polyamine depletion enhanced the susceptibility of the organisms to DFMO. The action of DFMO was specifically antagonized by exogenous polyamines. These data suggest that polyamines are important in the growth of Candida spp. and that inhibitors of polyamine biosynthesis may be useful as antifungal agents.  相似文献   

8.
9.
Wu  Jing  Fan  Xiangchen  Liu  Jia  Luo  Qiuling  Xu  Jisi  Chen  Xiulai 《Applied microbiology and biotechnology》2018,102(11):4755-4764
Applied Microbiology and Biotechnology - Enzymatic transformation is now an attractive alternative for α-ketoglutaric acid (α-KG) production, but the oxidative deamination from l-glutamic...  相似文献   

10.
Yeast α-glucosidase I (Cwh41p) encoded by CWH41 is an endoplasmic reticulum (ER) membrane-bound glycoprotein (833 residues), which plays an important role in the early steps of the N-glycosylation pathway. In this study functional expression of three truncated fragments of Cwh41p, all containing the catalytic region, was investigated. Cwht1p (E35-F833), with deletion of the N-terminus and transmembrane domain, was expressed as a catalytically active fragment while R320-F833(Cwht2p) and M526-F833 (Cwht3p) were not detected. Significantly higher glucosidase I activity was found in a soluble extract from yeast overexpressing CWHT1 (1,400 U/g biomass) than yeast overexpressing CWH41 (300 U/g biomass). Cwht1p was purified as a soluble 94 kDa non-glycosylated protein with a specific activity (3,600 U/mg protein) comparable to that of the soluble α-glucosidase I (3000 U/mg protein). These findings indicate that the active conformation of the enzyme is not dependent on protein glycosylation and suggest that the M1-I28 region of Cwh41p carries an ER-targeting signal sequence. In addition, two highly conserved carboxylic acid residues, E580 and D584 of Cwht1p (corresponding to E613 and D617 of Cwh41p), located within the catalytic domain of yeast enzyme were subjected to mutation. Substitution of each residue with Ala resulted in low expression and undetectable glucosidase I activity. These findings indicate that E613 and D617 play a crucial role in maintaining α-glucosidase I activity.  相似文献   

11.
A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.  相似文献   

12.
Abstract

The inhibition of α-glucosidase is used as a key clinical approach to treat type 2 diabetes mellitus and thus, we assessed the inhibitory effect of α-ketoglutaric acid (AKG) on α-glucosidase with both an enzyme kinetic assay and computational simulations. AKG bound to the active site and interacted with several key residues, including ASP68, PHE157, PHE177, PHE311, ARG312, TYR313, ASN412, ILE434 and ARG439, as detected by protein–ligand docking and molecular dynamics simulations. Subsequently, we confirmed the action of AKG on α-glucosidase as mixed-type inhibition with reversible and rapid binding. The relevant kinetic parameter IC50 was measured (IC50 = 1.738?±?0.041?mM), and the dissociation constant was determined (Ki Slope = 0.46?±?0.04?mM). Regarding the relationship between structure and activity, a high AKG concentration induced the slight modulation of the shape of the active site, as monitored by hydrophobic exposure. This tertiary conformational change was linked to AKG inhibition and mostly involved regional changes in the active site. Our study provides insight into the functional role of AKG due to its structural property of a hydroxyphenyl ring that interacts with the active site. We suggest that similar hydroxyphenyl ring-containing compounds targeting key residues in the active site might be potential α-glucosidase inhibitors. Abbreviations AKG alpha-ketoglutaric acid

pNPG 4-nitrophenyl-α-d-glucopyranoside

ANS 1-anilinonaphthalene-8-sulfonate

MD molecular dynamics.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
14.
15.
α-Ketobutyrate, an intermediate in the catabolism of threonine and methionine, is metabolized to CO2 and propionyl-CoA. Recent studies have suggested that propionyl-CoA may interfere with normal hepatic oxidative metabolism. Based on these observations, the present study examined the effect of α-ketobutyrate on palmitic acid and pyruvate metabolism in hepatocytes isolated from fed rats. α-Ketobutyrate (10 mM) inhibited the oxidation of palmitic acid by 34%. In the presence of 10 mM carnitine, the inhibition of palmitic acid oxidation by α-ketobutyrate was reduced to 21%. These observations are similar to those previously reported using propionate as an inhibitor of fatty acid oxidation, suggesting that propionyl-CoA may be responsible for the inhibition. α-Ketobutyrate (10 mM) inhibited 14CO2 generation from [14C]pyruvate by more than 75%. This inhibition was quantitatively larger than seen with equal concentrations of propionate. Carnitine (10 mM) had no effect on the inhibition of pyruvate oxidation by α-ketobutyrate despite the generation of large amounts of propionylcarnitine during the incubation. α-Ketobutyate inhibited [14C]glucose formation from [14C]pyruvate by more than 60%. This contrasted to a 30% inhibition caused by propionate. These results suggest that α-ketobutyrate inhibits hepatic pyruvate metabolism by a mechanism independent of propionyl-CoA formation. The present study demonstrates that tissue accumulation of α-ketobutyrate may lead to disruption of normal cellular metabolism. Additionally, the production of propionyl-CoA from α-ketobutyrate is associated with increased generation of propionylcarnitine. These observations provide further evidence that organic acid accumulation associated with a number of disease states may result in interference with normal hepatic metabolism and increased carnitine requirements.  相似文献   

16.
In this work, we describe the asymmetric synthesis of a series of fluorinated and non-fluorinated quaternary α-amino acid derivatives. This methodology involves the diastereoselective addition of chiral 2-p-tolylsulfinyl benzylcarbanions to either imines containing a 2-furyl moiety or trifluoromethyl α-imino esters. Synthetic practicality of this method is demonstrated by short (two-steps) and convenient preparation of 2-(trifluoromethyl)indoline-2-carboxylates.  相似文献   

17.
1. Cortisone acetate activates the acid alpha-glucosidase in rat liver slices and in isolated liver lysosomes. 2. The reaction is steroid specific and moreover does not occur with lysosomal acid phosphatase or beta-galactosidase. 3. After pretreatment of the lysosomes with cortisone, substrate (maltose) binding to the soluble lysosomal acid alpha-glucosidase is not affected, but the steroid does increase the V(max.) value. Membrane-bound enzyme is not activated by cortisone. 4. 4-[(14)C]Cortisone is preferentially bound to the lysosomal membrane and the possible involvement of this structure in the activation phenomenon is discussed.  相似文献   

18.
Ethylene production in leaf petiole and laminae tissues was stimulated in tomato (Lycopersicon esculentum Mill. cv. UCT5) plants exposed to salinity-stress. At the highest salinity level (250 mM NaCl), rates of ethylene production more than doubled over those observed in non-stressed plants. Correspondingly, petiolar epinasty increased with increasing levels of stress impositions. Both responses were suppressed when either 1 mM -aminooxyacetic acid (AOA), or 100 M Co2+ was simultaneously applied. Co2+, but not AOA, had a pronounced effect on ethylene production resulting from the application of a saturating dose (2 mM) of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. This result suggests that ethylene production is dependent upon the activity of ethylene forming enzyme (EFE). The magnitude of ethylene stimulation in leaf petioles was related to the salinity level imposed and to the induction of petiole epinasty. In the absence of stress impositions, epinastic responsiveness to ethylene or its precursor, ACC, might provide a simple, indirect criteria to adjudge salt-sensitivity among plants.Research supported by AID contract II, NEB-1070-A-00-2074-00.  相似文献   

19.
Decarboxylation rates for a series of C-3 to C-6 α-keto acids were determined in the presence of resting cells and cell-free extracts of Streptococcus lactis var. maltigenes. The C-5 and C-6 acids branched at the penultimate carbon atom were converted most rapidly to the respective aldehydes in the manner described for α-carboxylases. Pyruvate and α-ketobutyrate did not behave as α-carboxylase substrates, in that O2 was absorbed when they were reacted with resting cells. The same effect with pyruvate was noted in a nonmalty S. lactis, accounting for CO2 produced by some “homofermentative” streptococci. Mixed substrate reactions indicated that the same enzyme was responsible for decarboxylation of α-ketoisocaproate and α-ketoisovalerate, but it appeared unlikely that this enzyme was responsible for the decarboxylation of pyruvate. Ultrasonic disruption of cells of the malty culture resulted in an extract inactive for decarboxylation of pyruvate in the absence of ferricyanide. Dialyzed cell-free extracts were inactive against all keto acids and could not be reactivated.  相似文献   

20.
N. Amrhein  H. Holländer 《Planta》1979,144(4):385-389
Both enantiomers of -aminooxy--phenylpropionic acid (AOPP), potent inhibitors of L-phenylalanine ammonia-lyase, and their N-benzyloxycarbonyl (N-BOC) derivatives inhibit anthocyanin formation in developing flowers of Ipomoea tricolor Cav. and Catharanthus roseus Don. as well as in seedlings of Brassica oleracea var. caulo-rapa DC (kohlrabi) and B. oleracea var. capitata L. (red cabbage) with little interference with their normal development. Kohlrabi seedlings tolerate up to 0.3 mM L-AOPP and N-BOC-L-AOPP without a reduction of fresh weight or chlorophyll content, while anthocyanin is reduced to less than 20%.Abbreviations AOPP -aminooxy--phenylpropionic acid - N-BOC N-benzyloxycarbonyl - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号