首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV-B irradiation (700 J/m2) of bone marrow (BM) cells prior to transplantation into lethally gamma-irradiated (1050 rad) allogeneic rats prevents the development of GVHD and results in a stable mixed lymphohematopoietic chimerism. To better understand the underlying mechanisms of the development of stable radiation chimeras in this model, this study was designed to examine whether the dose (700 J/m2) of UV-B irradiation used for the modulation of the BM inoculum would affect the homing pattern of radiolabeled BM cells compared to that of thoracic duct lymphocytes (TDL) in the naive and lethally irradiated recipients. The results showed that intravenously administered, 111Indium-oxine-labeled, unmodified TDL home specifically to the spleen, lymph nodes, and BM compartments with a subsequent recirculation of a large number of cells from the spleen to the lymph nodes. In contrast, radiolabeled, unmodified BM cells migrate specifically to the spleen, liver, and BM with the lymph nodes, thymus, and nonlymphoid organs containing very little amounts of radioactivity. The stable concentrations of radioactivity in the lymphoid and nonlymphoid compartments between 3 and 72 hr after injection suggest that BM cells, unlike TDL, do not recirculate. The migration pattern of BM cells in the naive recipient was not significantly different from that seen in lethally irradiated animals except for the higher concentration of radioactivity in the spleen and BM of irradiated animals compared to that seen in naive recipients. The similarity of tissue localization of BM cells in naive or in irradiated syngeneic recipients to that of allogeneic recipients suggests that the homing of BM cells is not MHC restricted. Our findings of similarity between tissue localization of UV-B-irradiated labeled BM cells and unmodified BM cells in naive and lethally irradiated recipients suggest that a dose of 700 J/m2 of UV-B irradiation is not capable of impairing BM cell migration although it is sufficient to abolish the homing of TDL to the HEV-bearing organs. Thus, our results show that BM cells are less susceptible to cell damage by UV-B irradiation than lymphocytes thereby providing the rationale for ex vivo modulation (rather than elimination) of mature T-lymphocytes in the donor BM inoculum with UV-B irradiation. This relatively simple and effective approach to modulation of T-cells in donor BM inoculum may be potentially useful in preventing GVHD without endangering successful engraftment in larger animals and in man.  相似文献   

2.
Depletion of dendritic cells from UV-B-irradiated sheep skin was investigated by monitoring migration of these cells towards regional lymph nodes. By creating and cannulating pseudoafferent lymphatic vessels draining a defined region of skin, migrating cells were collected and enumerated throughout the response to UV-B irradiation. In the present study, the effects of exposing sheep flank skin to UV-B radiation clearly demonstrated a dose-dependent increase in the migration of Langerhans cells (LC) from the UV-B-exposed area to the draining lymph node. The range of UV-B doses assessed in this study included 2.7 kJ/m2, a suberythemal dose; 8 kJ/m2, 1 minimal erythemal dose (MED); 20.1 kJ/m2; 40.2 kJ/m2; and 80.4 kJ/m2, 10 MED. The LC were the cells most sensitive to UV-B treatment, with exposure to 8 kJ/m2 or greater reproducibly causing a significant increase in migration. Migration of gammadelta+ dendritic cells (gammadelta+ DC) from irradiated skin was also triggered by exposure to UV-B radiation, but dose dependency was not evident within the range of UV-B doses examined. This, in conjunction with the lack of any consistent correlation between either the timing or magnitude of migration peaks of these two cell types, suggests that different mechanisms govern the egress of LC and gammadelta+ DC from the skin. It is concluded that the depression of normal immune function in the skin after exposure to erythemal doses of UV-B radiation is associated with changes in the migration patterns of epidermal dendritic cells to local lymph nodes.  相似文献   

3.
The effect of influenza virus A/Japan 305 (H2N2) on the path of migration of recirculating lymphocytes has been studied. 51Cr-labeled rat thoracic duct lymphocytes (TDL) were incubated with virus at 37 degrees C for 1 hr and then infused i.v. into syngeneic recipients which were killed 1 hr later. Virus-treated TDL accumulated in the liver and their recovery in lymph nodes and spleen was severely reduced. Changes in lymphocytes induced by virus developed rapidly and were evident after incubation for only 15 min. UV-irradiated virus altered the pattern of lymphocyte localization but attachment of heat-inactivated virus to lymphocytes in vitro had no effect on their distribution in vivo. Evidence was obtained that some virus-treated TDL, initially sequestered in the liver, subsequently recovered their ability to circulate normally. Recovery was not complete and a population of cells failed to regain their ability to home into lymph nodes. Evidence is also presented demonstrating that influenza virus affected the homing properties of both T and B cells. It is suggested that aberrations in lymphocyte homing were mediated by the viral neuraminidase which induces changes in the cell membrane leading to their accumulation in the liver.  相似文献   

4.
Migration pathways of B cell and CD4+ and CD8+ T cell subsets of murine thoracic duct lymphocytes (TDL) were mapped. Per weight, the spleen accumulated more TDL than any other organ, regardless of lymphocyte subset. Spleen autoradiographs showed early accumulations of TDL in marginal zone and red pulp. Many TDL exited the red pulp within 1 hr via splenic veins. The remaining TDL entered the white pulp, not directly from the adjacent marginal zone but via distal periarterial lymphatic sheaths (dPALS). From dPALS, T cells migrated proximally along the central artery into proximal sheaths (pPALS) and exited the white pulp via deep lymphatic vessels. B cells left dPALS to enter lymphatic nodules (NOD), then also exited via deep lymphatics. T cells homed to lymph nodes more efficiently than B cells. Lymphocytes entered nodes via high-endothelial venules (HEV). CD4+ TDL reached higher absolute concentrations in diffuse cortex than did CD8+ T cells. However, CD8+ TDL moved more quickly through diffuse cortex than did CD4+ TDL. B cells migrated from HEV into NOD. Both T and B TDL exited via cortical and medullary sinuses and efferent lymphatics. A migration pathway across medullary cords is described. All TDL subsets homed equally well to Peyer's patches. T TDL migrated from HEV into paranodular zones while B cells moved from HEV into NOD. All TDL exited via lymphatics. Few TDL entered zones beneath dome epithelium. All subsets were observed within indentations in presumptive M cells of the dome epithelium.  相似文献   

5.
UV radiation-induced regulatory T cells (UV-Treg) inhibit the sensitization but not the elicitation of contact hypersensitivity when injected i.v. Because UV-Treg express the lymph node homing receptor CD62 ligand, upon i.v. injection they migrate into the lymph nodes but not into the periphery and therefore inhibit sensitization but not elicitation. We tried to modify the migratory behavior of UV-Treg with the aim to get them into the periphery and thereby to suppress the effector phase of immune reactions. Because the tissue selective homing of T effector cells is determined by tissue-specific dendritic cells (DC), we attempted to reprogram the migratory behavior of UV-Treg by DC. 2,4-Dinitrofluorobencene (DNFB)-specific UV-Treg coincubated with epidermal Langerhans cells (LC) blocked the elicitation upon i.v. injection into DNFB-sensitized mice. In contrast, i.v. injection of UV-Treg not incubated with LC did not inhibit the ear challenge. The same negative effect was observed for UV-Treg coincubated with DC from bone marrow, spleen, or lymph nodes. This effect was not due to different maturation stages as checked by MHC class II expression of the different DC types. Incubation with LC but not with bone marrow-derived DC down-regulated the expression of CD62 ligand on UV-Treg. Accordingly, CFDA-SE labeled UV-Treg coincubated with LC were found in the ears but not in the lymph nodes upon i.v. injection. This finding shows that the migratory behavior can be reprogrammed by tissue-specific DC and may have input on strategies trying to use Treg not only for the prevention but also for the treatment of immune-mediated diseases.  相似文献   

6.
We have studied the homing properties of B lymphocytes by using 51Cr-labeled lymphoid cells obtained from athymic, nu/nu mice, and animals made T-lymphocyte deficient by thymectomy and lethal irradiation followed by reconstitution with syngeneic bone marrow. Comparison was made to the patterns of distribution observed when cell preparations containing normal numbers of T and B lymphocytes were migrated. A small but significant percentage of labeled lymphocytes from lymph nodes, spleen, Peyer's Patches, and bone marrow of T-cell-deficient animals was shown to be lymph node seeking. Secondary transfers of lymph node cells from primary recipients caused enrichment of this lymph node-seeking population. Treatment of T-lymphocyte-deficient lymphoid cell preparations with neuraminidase reduced the percentages of cells homing to the lymph nodes. The data showed that B lymphocytes exhibit unique homing properties when injected into normal recipients. In addition, direct comparison of the homing patterns of B lymphocytes prepared from spleen and lymph nodes of athymic mice revealed differences suggesting that these lymphoid organs contained unique mixtures of at least two different kinds of B cell. The evidence supports the notion that the B-lymphocyte populations contain at least two subpopulations, one of which possesses the ability to home to lymph nodes.  相似文献   

7.
Human natural IFN-producing cells (IPC) circulate in the blood and cluster in chronically inflamed lymph nodes around high endothelial venules (HEV). Although L-selectin, CXCR4, and CCR7 are recognized as critical IPC homing mediators, the role of CXCR3 is unclear, since IPC do not respond to CXCR3 ligands in vitro. In this study, we show that migration of murine and human IPC to CXCR3 ligands in vitro requires engagement of CXCR4 by CXCL12. We also demonstrate that CXCL12 is present in human HEV in vivo. Moreover, after interaction with pathogenic stimuli, murine and human IPC secrete high levels of inflammatory chemokines. Thus, IPC migration into inflamed lymph nodes may be initially mediated by L-selectin, CXCL12, and CXCR3 ligands. Upon pathogen encounter, IPC positioning within the lymph node may be further directed by CCR7 and IPC secretion of inflammatory chemokines may attract other IPC, promoting cluster formation in lymph nodes.  相似文献   

8.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Rat thoracic duct lymphocytes (TDL) bind selectively to venules lined by high endothelial cells (HEV) when overlaid onto glutaraldehyde-fixed frozen sections of lymph nodes. This report describes the characteristics of TDL binding to HEV in unfixed frozen sections and compares this reactivity with that observed after fixing sections with different reagents. We found that TDL bound to unfixed HEV and that the pattern of adherence to such sections was identical to that observed when using glutaraldehyde-fixed tissue. Fixation of the sections with glutaraldehyde, however, enhanced the binding reaction. This effect was also observed when sections were treated with the diimidoester, dimethylsuberimidate (DMS) but not when methanol or formaldehyde was used. Since glutaraldehyde and DMS are each bifunctional cross-linking reagents, the results suggest that in vitro HEV adherence was facilitated under conditions in which the endothelial binding sites were present in an aggregated form.  相似文献   

10.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

11.
Initiation of immune responses in brain is promoted by local dendritic cells   总被引:15,自引:0,他引:15  
The contribution of dendritic cells (DCs) to initiating T cell-mediated immune response in and T cell homing into the CNS has not yet been clarified. In this study we show by confocal microscopy and flow cytometry that cells expressing CD11c, CD205, and MHC class II molecules and containing fluorescently labeled, processed Ag accumulate at the site of intracerebral Ag injection. These cells follow a specific pattern upon migrating out of the brain. To track their pathway out of the CNS, we differentiated DCs from bone marrow of GFP-transgenic mice and injected them directly into brains of naive C57BL/6 mice. We demonstrate that DCs migrate from brain to cervical lymph nodes, a process that can be blocked by fixation or pertussis toxin treatment of the DCs. Injection of OVA-loaded DCs into brain initiates a SIINFEKL (a dominant OVA epitope)-specific T cell response in lymph nodes and spleen, as measured by specific tetramer and LFA-1 activation marker staining. Additionally, a fraction of activated SIINFEKL-specific T cells home to the CNS. Specific T cell homing to the CNS, however, cannot be induced by i.v. injection of OVA-loaded DCs alone. These data suggest that brain-emigrant DCs are sufficient to support activated T cells to home to the tissue of DC origination. Thus, initiation of immune reactivity against CNS Ags involves the migration of APCs from nervous tissue to peripheral lymphoid tissues, similarly to that in other organs.  相似文献   

12.
Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.  相似文献   

13.
Tissue-selective lymphocyte homing is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. These vessels, the post capillary high endothelial venules (HEV), are found in organized lymphoid tissues, and at sites of chronic inflammation. Lymphocytes bearing specific receptors, called homing receptors, recognize and adhere to their putative ligands on high endothelial cells, the vascular addressins. After adhesion, lymphocytes enter organized lymphoid tissues by migrating through the endothelial cell wall. Cells and/or soluble factors arriving in lymph nodes by way of the afferent lymph supply have been implicated in the maintenance of HEV morphology and efficient lymphocyte homing. In the study reported here, we assessed the influence of afferent lymphatic vessel interruption on lymph node composition, organization of cellular elements; and on expression of vascular addressins. At 1 wk after occlusion of afferent lymphatic vessels, HEV became flat walled and expression of the peripheral lymph node addressin disappeared from the luminal aspect of most vessels, while being retained on the abluminal side. In addition, an HEV-specific differentiation marker, defined by mAb MECA-325, was undetectable at 7-d postocclusion. In vivo homing studies revealed that these modified vessels support minimal lymphocyte traffic from the blood. After occlusion, we observed dramatic changes in lymphocyte populations and at 7-d postsurgery, lymph nodes were populated predominantly by cells lacking the peripheral lymph node homing receptor LECAM-1. In addition, effects on nonlymphoid cells were observed: subcapsular sinus macrophages, defined by mAb MOMA-1, disappeared; and interdigitating dendritic cells, defined by mAb NLDC-145, were dramatically reduced. These data reveal that functioning afferent lymphatics are centrally involved in maintaining normal lymph node homeostasis.  相似文献   

14.
Summary Affinity of lymphoid cells for the microenvironment of germinal centers (GC), as detectable in transfer experiments by rapid homing in spleen GC from the blood, is a capacity expressed by only a subset of lymphoid cells, in particular by those constituting a GC. However, when introduced into the blood stream, these cells do not home into GC of lymph nodes and gut-associated lymphoid tissues. To investigate further this homing inability for high endothelial venule (HEV)-containing lymphoid tissues, GC cells isolated from donor rabbit appendix were labeled in vitro with 3H-leucine and injected into an afferent lymph vessel of recipient popliteal lymph nodes. Draining lymph nodes were removed 15 min to 24 h after cell administration and prepared for radioautography. For reference, the migration of cells isolated from Peyer's patches and thoracic duct lymph was also studied. By use of appendix GC cells, large numbers of labeled cells were found to migrate into GCs of the outer cortex centripetally, i.e., from the subcapsular sinus through the lymphocyte corona into the GC proper. The same was observed for cells from Peyer's patches, although in smaller numbers. Thoracic duct lymphocytes were only localized in the lymphocyte corona and the deep cortex. Thus, appendix GC cells and a subpopulation of cells from Peyer's patches can reach lymph node GC, but only when administered intralymphatically. We conclude that cells expressing affinity for the GC microenvironment do so for both spleen and lymph node GC, but do not have the capacity to interact with the wall of HEV; its implication for the understanding of the dynamics of a GC reaction is discussed.Abbreviations GC germinal center - GCC germinal-center cells - AGCC appendix germinal-center cells - GCPC germinal-center precursor cells - GCSC germinal-center seeking cells - HEV high endothelial venules - SRBC sheep red blood cells - PP Peyer's patch - TDL thoracic duct lymphocytes - NCS newborn calf serum - PBS phosphate-buffered saline - PNA peanut agglutinin - LN lymph node - LC lymphocyte corona - DC deep cortex unit  相似文献   

15.
In vitro X-irradiation of 51Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to alter their subsequent in vivo distribution significantly in syngeneic BDF1 mice. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes or Peyer's patches showed a significant exposure-dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed no preferential distribution to the same tissues. Sampling host tissues at various times after irradiation and injection did not demonstrate any return to normal patterns of distribution. The alterations in lymphocyte homing observed after in vitro irradiation appear to be due to the elimination of a selective population of lymphocytes or membrane alterations of viable cells, and the detection of these homing changes is in turn dependent upon the relative numbers of various lymphoid subpopulations which are obtained from different cell sources. Radiation-induced alterations in the normal homing patterns of lymphoid cells may thus be of considerable importance in the evaluation of subsequent functional assays in recipient animals.  相似文献   

16.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

17.
An in vitro system developed for studying lymphocyte binding to high endothelial venules (HEV) of lymph nodes was used to determine if there are similar binding sites in other organs of the rat. Thoracic duct lymphocytes (TDL) adhered selectively and uniformly to white matter when overlaid onto glutaraldehyde-fixed tissue sections of cerebellum and cerebrum. The pattern of TDL adherence to cerebellar sections showed that binding to nonmyelinated areas was negligible. Comparison of TDL-white matter to TDL-HEV binding demonstrated that the density of adherence to each site was quantitatively similar. In contrast, lymphocytes exhibited little tendency to bind to tissue sections of liver, spleen, heart, thymus, and salivary glands. TDL adherence to cerebellar white matter occurred rapidly, was cell dose dependent and optimal at 7 degrees C. White matter binding was also a property of spleen lymphocytes but the thymus was deficient in cells with this capability. The affinity of TDL and spleen lymphocytes for myelinated areas of the brain suggests the presence of myelin binding receptors on these cells.  相似文献   

18.
S A Weston  C R Parish 《Cytometry》1992,13(7):739-749
Previous studies have identified unique cell surface antigens which are associated with the specific binding of lymphocytes to high endothelial venules (HEV). Evidence is presented in this paper which demonstrates that uptake of the fluorescent dye calcein by lymphocytes represents an additional marker for the lymph node homing subpopulation of lymphocytes. Calcein exhibits a characteristic ability to label lymphocytes differentially into two distinct populations, based on fluorescence intensity, that does not occur with three other structurally related, fluorescein-based dyes. In vivo lymphocyte migration studies revealed that cells displaying the "dull" fluorescence phenotype, although entering all lymphoid organs examined, preferentially homed to the lymph nodes, particularly the popliteal lymph node (PLN). By contrast, lymphocytes displaying the "bright" phenotype were essentially excluded from entering lymphoid organs, where entry is HEV dependent, but were observed entering spleen, where entry is HEV independent. Furthermore, a high proportion (76.5%) of lymphocytes displaying the dull fluorescence phenotype expressed the PLN homing receptor MEL-14. Based on these observations it is suggested that calcein uptake may be a marker for general membrane properties, such as fluidity and plasticity, essential for the passage of lymphocytes through HEV.  相似文献   

19.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

20.
Down-regulation of homing receptors after T cell activation   总被引:32,自引:0,他引:32  
The specific pattern of lymphocyte localization and recirculation is important for the induction and expression of normal immune responses. In order to home to lymph nodes (LN), lymphocytes must first recognize and bind to specific high endothelial venules (HEV) in the LN. Binding to LN HEV is mediated by specific lymphocyte receptors, termed homing receptors, which are recognized by the mAb MEL-14. We examined the changes that occur in homing receptor expression after activation of murine T lymphocytes in vitro. Cells activated in MLC or by Con A undergo a 75% loss in their ability to recognize HEV, as demonstrated by a decrease in binding to HEV in vitro. Large, activated cells isolated from a primary MLC by elutriator centrifugation were completely unable to recognize HEV, whereas the small cells in the same culture continued to bind well. Flow cytometric analysis with MEL-14 showed that the activated fraction had lost expression of gp90MEL-14, the homing receptor Ag, whereas the inactivated cells remained MEL-14+. Concomitant with the loss of homing receptor expression, most of the activated cells became strongly peanut agglutinin (PNA)-positive, demonstrating a marked change in surface glycosylation. Thus, these MLC consist of two major populations of T cells--small, inactivated lymphocytes that are MEL-14+PNAlo and large, activated blast cells that are MEL-14-PNAhi. Purified MEL-14+ T cells activated by Con A gave rise to MEL-14- progeny, showing that gp90MEL-14 is lost from gp90MEL-14-positive precursors, rather than from the selective growth of MEL-14- cells. Furthermore, the loss of Ag expression on at least some activated cells is reversible in resting culture, with almost half of the cells reverting to MEL-14+ after the cessation of stimulation. These experiments show that activation of T cells results in down-regulation of surface homing receptors, resulting in their inability to recognize and bind to the endothelial surface of HEV. This suggests that the activation of T cells in vivo would result in a dramatic and physiologically significant change in their migration and localization properties which would be important during a normal immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号