首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Cytoplasmic male sterility in the olive (Olea europaea L.)   总被引:1,自引:0,他引:1  
The olive tree is usually hermaphrodite but self-incompatible. In the Western Mediterranean some cultivars are totally male-sterile. Three different male-sterile phenotypes have been recognised. To infer the genetic basis of male sterility we studied its inheritance and cytoplasmic diversity in wild (oleaster) and cultivated Mediterranean olive. In the cross Olivière×Arbequina, the male-sterile trait was maternally inherited and affected all progenies. We also checked that both chloroplast and mitochondrial DNAs are maternally inherited. RFLP studies on chloroplast and mitochondrial DNAs revealed several cytotypes: two chlorotypes and four mitotypes in cultivars and oleaster (wild or feral Mediterranean olive). Furthermore, a total linkage desequilibrium between the CCK chlorotype and the MCK mitotype in cultivars and oleaster from different regions supports the fact that paternal leakage of organelles was not observed. The male sterility (ms 2) displayed by Olivière, plus six other cultivars and three oleaster was strictly associated with the CCK chlorotype and the MCK mitotype. These facts suggest that Olivière carries cytoplasmic male sterility. Male-fertile and male-sterile oleasters carrying this cytotype showed the presence of restorer alleles. This CMS might be due to a distant cross between olive taxa. The two other male-sterile phenotypes displayed by Lucques (ms 1) and Tanche (ms 3) were associated with the ME1 mitotype but we have not demonstrated CMS. Received: 26 July 1999 / Accepted: 27 August 1999  相似文献   

2.
Aim The oleaster is believed to have originated in the eastern Mediterranean, implying that those in the western Mediterranean basin could be feral. Several studies with different molecular markers (isozymes, random amplified polymorphic DNA, amplified fragment length polymorphism) have shown a cline between the eastern and the western populations, which supports this hypothesis. To reconstruct the post‐glacial colonization history and establish a relationship between olive and oleaster populations in the Mediterranean basin, analyses were carried out on the genetic variation of chloroplast DNA (chlorotype) and at 12 unlinked simple sequence repeat (SSR) loci, sampling a total of 20 oleaster groves. Location This is the first known large‐scale molecular study of SSR loci based on samples of both oleasters and cultivars from the entire Mediterranean basin. Methods Samples were taken from 166 oleasters in 20 groves of modern populations, and 40 cultivars to represent molecular diversity in the cultivated olive. The Bayesian method and admixture analysis were used to construct the ancestral populations (RPOP; reconstructed panmictic oleaster populations) and to estimate the proportion of each RPOP in each tree. If one tree can be assigned to two or more RPOPs, it can be regarded as a product of hybridization between trees from different populations (i.e. admix origin). Results On this first examination of the SSR genetic diversity in the olive and oleaster, it was found to be structured in seven RPOPs in both eastern and western populations. Based on different population genetic methods, it was shown that: (1) oleasters are equally present in the eastern and the western Mediterranean, (2) are native, and (3) are not derived from cultivars. Chlorotypes (one and three in the eastern and western Mediterranean, respectively) revealed fruit displacement for the oleasters. Main conclusions Oleaster genetic diversity is divided into seven regions that could overlay glacial refuges. The gradient, or cline, of genetic diversity revealed by chloroplast and SSR molecular markers was explained by oleaster recolonization of the Mediterranean basin from refuges after the last glacial event, located in both eastern and western regions. It is likely that gene flow has occurred in oleasters mediated by cultivars spread by human migration or through trade. Animals may have helped spread oleasters locally, but humans have probably transported olives but not oleaster fruits over long distances. We found that cultivars may have originated in several RPOPs, and thus, some may have a more complex origin than expected initially.  相似文献   

3.
As a result of the early domestication and extensive cultivation of the olive tree throughout the Mediterranean Basin, the wild-looking forms of olive (oleasters) presently observed constitute a complex, potentially ranging from wild to feral forms. Allozyme variation was analysed at 10 loci in 31 large and 44 small oleaster populations distributed in various habitats of the Mediterranean Basin and in two populations of the wild subspecies Olea europaea subsp (ssp) guanchica, endemic to the Canary islands and closely related to oleasters. At eight polymorphic loci, 25 alleles were identified. Genetic evidence that nondomesticated oleasters still survive locally was provided by the occurrence of four and one alleles shared exclusively by the eight western and two eastern oleaster populations, respectively, which were collected in forests potentially containing genuinely wild forms according to environmental, historical and demographic criteria. As reported previously from cytoplasmic and RAPDs analysis, substantial genetic differentiation was observed between the eastern oleaster populations genetically close to most olive clones cultivated in the Mediterranean Basin, and the western populations that are related to the wild Canarian populations. In addition, the occurrence of significantly lower heterozygosity in cultivated olive than in oleasters, whatever their origin, suggests that intensive selection involving inbreeding has taken place under cultivation to obtain particular characteristics in the olive cultivars.  相似文献   

4.
BACKGROUND AND AIMS: Olive cultivars and their wild relatives (oleasters) represent two botanical varieties of Olea europaea subsp. europaea (respectively europaea and sylvestris). Olive cultivars have undergone human selection and their area of diffusion overlaps that of oleasters. Populations of genuine wild olives seem restricted to isolated areas of Mediterranean forests, while most other wild-looking forms of olive may include feral forms that escaped cultivation. METHODS: The genetic structure of wild and cultivated olive tree populations was evaluated by amplified fragment length polymorphism (AFLP) markers at a microscale level in one continental and two insular Italian regions. KEY RESULTS: The observed patterns of genetic variation were able to distinguish wild from cultivated populations and continental from insular regions. Island oleasters were highly similar to each other and were clearly distinguishable from those of continental regions. Ancient cultivated material from one island clustered with the wild plants, while the old plants from the continental region clustered with the cultivated group. CONCLUSIONS: On the basis of these results, we can assume that olive trees have undergone a different selection/domestication process in the insular and mainland regions. The degree of differentiation between oleasters and cultivated trees on the islands suggests that all cultivars have been introduced into these regions from the outside, while the Umbrian cultivars have originated either by selection from local oleasters or by direct introduction from other regions.  相似文献   

5.
In the present study, we proposed to determine the genetic diversity and relationships between local cultivars and wild olive trees from three important olive-growing regions, i.e., Marmara, Aegean, and Mediterranean, of Turkey. This is the first known large-scale molecular study to investigate the relationships between local cultivars and wild olives from the eastern Mediterranean basin. Two hundred and four oleaster trees and 27 cultivars were sampled to represent molecular diversity. We used 11 simple sequence repeat and 13 sequence-related amplified polymorphism markers to assess genetic variations and inter-relationships among the samples. The results of the analysis showed differences in the levels of allelic composition and heterozygosity between cultivated and wild olive trees. The observation of a high proportion of a certain wild-type genetic background in the cultivars may indicate the former use of local wild trees in olive domestication in Turkey, a possible autochthonal origin of cultivars. “Gemlik” was found to be the most common olive cultivar in the Marmara region and most of the wild olive samples from this region may be feral forms derived from cultivar seed spreading. The information obtained from this study can help to assist the management of an olive collection and sheds some light on the origin of Turkish olive cultivars.  相似文献   

6.
To assess the genetic diversity in Moroccan cultivated olive, Olea europaea L. subsp. europaea, we performed molecular analysis of olive trees sampled in four geographic zones representing all areas of traditional olive culture. The analysis of 215 trees using 15 simple sequence repeat (SSR) loci revealed 105 alleles distributed among 60 SSR profiles. The analysis of chloroplast deoxyribonucleic acid polymorphism for these 60 olive genotypes allowed to identify four chlorotypes: 42 CE1, one CE2, nine COM1 and eight CCK. Among the 60 SSR profiles, 52 corresponded to cultivated olive trees for which neither denomination nor characterisation is available. These local olive genotypes displayed a spatial genetic structuring over the four Moroccan geographic zones (northwest, north centre, Atlas and southwest), as pairwise Fst values ranged from 0.0394 to 0.1383 and varied according to geographic distance. As single alleles detected in local olive were also observed in Moroccan oleaster populations, results suggest that plant material was mainly selected from indigenous populations. The assumption that Picholine marocaine cultivar is a multi-clonal cultivar was not supported by our data because we found a single genotype for 112 olive trees representing 31 to 93% of the olives sampled locally in the 14 different areas. Picholine marocaine and the few other named cultivars do not seem to belong to the same gene pools as the unnamed genotypes cultivated only locally. The situation is paradoxical: a substantial genetic diversity in Moroccan olive germplasm, probably resulting from much local domestication, but a single cultivar is predominant.  相似文献   

7.
Polymorphism in the lengths of restriction fragments of the whole cpDNA molecule were studied in 15 taxa (species or subspecies) of the genus Olea. From restriction analysis using nine endonucleases, 28 site mutations and five length polymorphisms were identified, corresponding to 12 distinct chlorotypes. From a phenetic analysis based on a Nei’s dissimilarity matrix and a Dollo parsimony cladistic analysis using, as an outgroup, a species of the genus Phillyrea close to Olea, the ten taxa of section Olea were distinguished clearly from the five taxa of section Ligustroides which appear to posses more ancestral cpDNA variants. Within the section Ligustroides, the tropical species from central-western Africa, Olea hochtetteri, showed a chlorotype which differed substantially from those of the other four Olea taxa growing in southern Africa, supporting a previous assessment according to which O. hochtetteri may have been subjected to a long period of geographical isolation from the other Olea taxa. Within the Olea section, three phyla were identified corresponding to South and East Africa taxa, Asiatic taxa, and a group including Saharan, Macaronesian and Mediteranean taxa, respectively. On the basis of cpDNA variation, the closest Olea taxa to the single Mediterranean species, Olea europaea, represented by its very predominant chlorotype, observed in both wild and cultivated olive, were found to be Olea laperrinei (from the Sahara), Olea maroccana (from Maroccan High Atlas) and Olea cerasiformis (from Macaronesia). These three taxa, which all share the same chlorotype, may have a common maternal origin. Received: 5 December 1999 / Accepted: 30 December 1999  相似文献   

8.
Chloroplast DNA diversity in the olive (Olea europaea L.) complex was studied using PCR-RFLP and microsatellite markers. Fifteen chlorotypes were distinguished. We constructed a cpDNA phylogenetic tree in which five clades were recognised and located in distinct geographic areas: clade A in Central and Southern Africa, clade C in Asia, clade M in North-West Africa, clade E1 in the Mediterranean Basin and Sahara, and clade E2 in West Mediterranea. Cultivated olive clustered with Mediterranean and Saharan wild forms (clades E1 and E2). Strong genetic differentiation for cpDNA markers was observed between eastern and western Mediterranean olives, suggesting that these areas have represented different glacial refugia. Humans most likely spread one eastern chlorotype, preponderant in cultivars, across the western Mediterranean Basin. Its presence in O. e. subsp. laperrinei from the Sahara suggests a possible Mediterranean olive origin in an African population, which may have overlapped in the Southern Mediterranean during the Quaternary.  相似文献   

9.
A study of nuclear and cytoplasmic genetic diversity of cultivated olive, oleaster and other taxa belonging to the complex O. europaea was performed. Nuclear DNA polymorphism (RAPDs) in oleaster displays a gradient between the east and west of the Mediterranean Basin. In cultivars, the gradient is less visible owing to their diffusion and selection. Furthermore, three mitotypes (ME1, MOM and MCK) were detected in both cultivated olive and oleaster. A fourth mitotype, ME2, was unique to some cultivars. The preponderant mitotype, ME1, marks the Near Eastern origin of olive in oleaster. In the west of the Mediterranean, another mitotype, MOM, was found in most oleaster. and a few cultivars. The third, MCK, was found in a few oleaster from the west and in cultivars originating in Kabylie and Languedoc. We argue that MCK marks an ancestral Mediterranean population. The mitotypes mark independent cultivated olive origins which were not detected with DNA nuclear diversity.  相似文献   

10.
Ziziphus is an important genus within the family Rhamnaceae. This genus includes several important fruit tree species that are widely planted in China and India, such as the Chinese jujube (Ziziphus jujuba Mill.), the wild jujube (Z. acidojujuba), and the Indian jujube (Z. mauritiana). However, information about their domestication based on the chlorotype diversity of Chinese jujube population is lacking. In this study, chloroplast microsatellite (cpSSR) markers were developed and used to investigate the genetic relationships between and domestication of jujube cultivars and wild jujube populations. Primer sets flanking each of the 46 cpSSR loci in non-coding regions of the chloroplast genome sequence of Z. jujuba Mill. cv. ‘Junzao’ were designed. In total, 10 markers showed polymorphisms from 15 samples (9 jujube cultivars and 6 wild jujube individuals), of which 8 loci were due to variations in the number of mononucleotide (A/T) repeats and 2 were due to indels. Six cpSSR markers were used in further analyses of 81 additional samples (63 jujube cultivars, 17 wild jujube samples, and 1 Indian jujube). Using these cpSSR markers, the number of alleles per locus ranged from two to four. In general, the Shannon Index (I) for each cpSSR ranged from 0.159 to 0.1747, and the diversity indices (h) and uh were 0.061 to 0.435 and 0.062 to 0.439, respectively. Seven chlorotypes were found; the Indian jujube showed distinct chlorotypes, and both the Chinese and wild jujube had four chlorotypes and shared two chlorotypes. A dominant chlorotype (G) accounted for 53 of 72 jujube cultivars and 13 of 23 wild jujube individuals. All chlorotypes were highly localized along the Yellow River, from the mid- to the lower reaches, suggesting a wide origin of jujube. These cpSSR markers can be applied to population and evolution studies of Chinese jujube and wild jujube.  相似文献   

11.
Previous papers have dealt with olive chloroplastic DNA (cpDNA) variation revealed using several methods (RFLPs, PCR-RFLPs and microsatellites) and have led to different conclusions. This paper aims to reconsider these divergences. A Southern approach was applied to reveal polymorphism. We used chloroplast DNA of Phillyrea media as a probe. Based on these data, only four chlorotypes were identified in the olive complex. The number of detected lineages was lower than reported in the literature using a direct cpDNA RFLP approach, and was insufficient to distinguish the North African subspecies europaea, maroccana, guanchica and laperrinei. Furthermore, one individual considered belonging to the subspecies laperrinei was questionable. Using other cpDNA and mitochondrial DNA (mtDNA) polymorphisms - based on PCR and RFLP methods, respectively - we showed that this individual displays the cytoplasmic lineage CE1-ME1 characteristic of most Eastern mediterranean cultivars and of Olea europaea subsp. laperrinei from Hoggar. However, based on RAPDs, this individual appeared as mislabelled and probably corresponded to a Mediterranean cultivar or a feral form. In addition, we checked O. e. subsp. laperrinei herbarium samples using two cpDNA microsatellites, which revealed polymorphisms. These also supported that both populations from Niger and Algeria displayed a chlorotype related to CE1. Consequently, based on cpDNA, the relationships of O. e. subsp. laperrinei from Hoggar with a Mediterranean lineage appeared well supported, whereas the South West Moroccan and Macaronesian olives appeared in a different clade using both mtDNA and cpDNA polymorphisms. We conclude that methods based on PCR reveal more polymorphisms in the cpDNA and lead to more-reliable results that the classical RFLP method.  相似文献   

12.
Recent advances in molecular biology have allowed the development of techniques to contrast spatial differentiation in nuclear and cytoplasmic genes and thus provide important data on relative levels of gene flow by pollen and seed in higher plants. In this paper, we compare the spatial structure of nuclear (allozymes) and cytoplasmic (cpDNA) genes among populations of the gynodioecious Thymus vulgaris in southern France. Based on a combination of three restriction enzymes (CfoI, EcoRV, and PstI), eight chlorotypes (combination of three restriction enzyme patterns revealed by Southern hybridization of Beta vulgaris cpDNA) were identified in the 13 studied populations. One chlorotype was particularly abundant and was detected in nearly all populations. Only one chlorotype was specific to a single population. Up to four different chlorotypes were observed in some populations. An FST of 0.238 (P < 0.002) for cpDNA haplotypes indicates spatial structure of cytoplasmic genes among the studied populations. Similar patterns were found within a single young population (CAB) structured in patches and surrounded by a continuous cover of T. vulgaris where the FST is 0.546 (P < 0.002). No significant correlation between sex and chlorotype nor between cpDNA diversity and female frequency was detected. Allozyme markers showed markedly less spatial structure (FST = 0.021 among populations and 0.019 in the CAB population, P < 0.001). This difference between cpDNA and nuclear allozyme markers suggests that pollen dispersal is more important than seed dispersal both among and within populations.  相似文献   

13.
The population structure of the pseudo-metallophyte herb, Arabidopsis halleri, was studied using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) on chloroplast DNA (cpDNA). The history of metallicolous (M) populations showing increased zinc tolerance was investigated. Eight primer-enzyme combinations out of 72 tested were applied to a total of 625 individuals from 28 widespread populations, 14 of them being M. Eleven distinct chlorotypes were found: five were common to nonmetallicolous (NM) and M populations, whereas six were only observed in one edaphic type (five in NM and one in M). No difference in chlorotype diversity between edaphic types was detected. Computed on the basis of chlorotype frequencies, the level of population differentiation was high but remained the same when taking into account levels of molecular divergence between chlorotypes. Isolation by distance was largely responsible for population differentiation. Geographically isolated groups of M populations were more genetically related to their closest NM populations than to each other. Our results suggest that M populations have been founded separately from distinct NM populations without suffering founding events and that the evolution towards increased tolerance observed in the distinct M population groups occurred independently.  相似文献   

14.
The study of genetic diversity within the olive-tree (cultivated and wild forms) may be useful to reveal agronomic traits in the wild germplasm and to try to understand the history of the olive-tree domestication. In this way, a study of nuclear and mitochondrial DNAs of cultivated and wild olives from two Corsican and Sardinian Mediterranean islands was performed using RAPD and RFLP markers. Our results show that most of the varieties and most of the oleasters were separated using the UPGMA dendrogram based on the Nei and Li similarity index. Most of oleasters carried either the MOM or MCK mitotype, characteristic of olives in the Western Mediterranean, whereas most of the varieties carried the ME1 mitotype, characteristic of olives in the East Mediterranean. The results indicate that the combination of mitotype and RAPD markers can be used as a powerful tool for differentiating two groups in the wild forms: the Western true oleasters and the feral forms. The true oleasters are characterized by a Western mitotype and a Western RAPD pattern. Feral forms originate either from varieties or from hybridisation between a variety and an oleaster. Consequently, as expected, some of them aggregated with the varieties from which they were derived. The other feral forms are clustered with the oleasters and were detected only by their mitotype determination. This study has also permitted us to differentiate two populations of cultivated olives in Corsica: one with close relationships with Italian varieties (influenced by the East) and one selected from local oleasters probably due to a better local adaptation than foreign varieties.  相似文献   

15.
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.  相似文献   

16.

Background and Aims

Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin.

Methods

The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars.

Key Results

Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives.

Conclusions

This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity.  相似文献   

17.
Wild olive trees, namely oleaster, are considered the ancestor of cultivated olive and a unexplored source of genetic variability that might contain important traits of agronomic and biotechnological interest. The longevity and genetic diversity of oleasters may have favoured selection of specific and well adapted rhizosphere microbial populations that can constitute unique reservoirs of microbial antagonists of Verticillium dahliae, the main soilborne fungal pathogen of olive worldwide. The objective of this present study was to determine the structure and diversity of bacterial communities in the rhizosphere and endosphere of oleaster from 11 havens in Cádiz and Córdoba provinces of Andalusia, southern Spain. To carry out the study we used a multiphasic approach. First, the occurrence and diversity of rhizosphere bacteria was monitored by a cultivation-independent-approach, using fluorescent terminal restriction fragment length polymorphism (FT-RFLP) analyses of amplified 16S rDNA sequences. FT-RFLP patterns revealed a high heterogeneity in the composition of the sampled rhizosphere bacterial communities and suggested the existence of plant genotype-site-specific communities, with each oleaster haven being a unique reservoir of bacterial diversity. Secondly, to investigate the antagonistic potential of these root-associated bacterial populations, a total of 675 bacterial isolates obtained from oleaster rhizosphere and endosphere were screened by dual testing for inhibition of in vitro growth of the highly virulent, olive defoliating pathotype of V. dahliae. Out of 675 tested bacterial isolates, 94 (14%) showed a strong antagonistic activity against a defoliating V. dahliae pathotype. Of the antagonistic bacteria, a slightly lower proportion (12.9% of total bacteria) were inhabitant of the oleaster rhizosphere compared to that in the endosphere (16.5%). The biotechnological potential of those isolates was assessed by in vitro production of different hydrolytic enzymes, indole-1.3-acetic acid (IAA), siderophores, and antimicrobial compounds. Overall, most of bacterial antagonists (58.5 to 78.3%) showed proteolytic, lipolytic, and chitinolytic activity, and produced IAA and siderophores. Finally, analysis of the 16S rDNA gene sequence indicated that most of the 94 bacterial antagonists belong to genera Bacillus (56.4%), Pseudomonas (27.7%), and Paenibacillus (7.4%). Overall, the rhizosphere and endosphere of wild olives were proved as a good reservoir of bacteria antagonists against V. dahliae. Several of those bacteria showing high and broad antagonism potential may therefore be considered for further analyses as promising biocontrol agents against V. dahliae in olive.  相似文献   

18.
The domestication of the Eurasian grape (Vitis vinifera ssp. sativa) from its wild ancestor (Vitis vinifera ssp. sylvestris) has long been claimed to have occurred in Transcaucasia where its greatest genetic diversity is found and where very early archaeological evidence, including grape pips and artefacts of a 'wine culture', have been excavated. Whether from Transcaucasia or the nearby Taurus or Zagros Mountains, it is hypothesized that this wine culture spread southwards and eventually westwards around the Mediterranean basin, together with the transplantation of cultivated grape cuttings. However, the existence of morphological differentiation between cultivars from eastern and western ends of the modern distribution of the Eurasian grape suggests the existence of different genetic contribution from local sylvestris populations or multilocal selection and domestication of sylvestris genotypes. To tackle this issue, we analysed chlorotype variation and distribution in 1201 samples of sylvestris and sativa genotypes from the whole area of the species' distribution and studied their genetic relationships. The results suggest the existence of at least two important origins for the cultivated germplasm, one in the Near East and another in the western Mediterranean region, the latter of which gave rise to many of the current Western European cultivars. Indeed, over 70% of the Iberian Peninsula cultivars display chlorotypes that are only compatible with their having derived from western sylvestris populations.  相似文献   

19.
Four hundred and four individuals belonging to the species Olea europaea were characterised using mitochondrial DNA (mtDNA) RFLPs. Twelve mitotypes were distinguished. The combination of mtDNA information with cpDNA polymorphism (characterised in a previous study) led us to recognise 20 cytoplasmic lineages of which seven were found in the Mediterranean area (oleasters, cultivars and O. e. subsp. maroccana). In the olive complex, strong cytoplasm genetic differentiation was revealed ( F(st) = 0.73). Very strong linkage disequilibrium between cpDNA and mtDNA polymorphisms was observed, particularly in the Mediterranean subspecies europaea. This high congruence between genetic structure based on cpDNA or mtDNA sustains a low level of recurrent mutation in both organelle DNAs and, thus, the polymorphisms used in this study were pertinent to reconstruct olive phylogeography. In the Mediterranean area, genetic drift due to population regression during Quaternary glaciations, and founder effects associated with the postglacial seed dissemination, have probably contributed to the existence of a high genetic linkage disequilibrium between cpDNA and mtDNA polymorphisms. Thus, four Mediterranean cytoplasmic lineages, clearly distinguished both by cpDNA and mtDNA polymorphisms, most likely reflect four distinct relic populations during Quaternary glaciations. Finally, O. e. subsp. maroccana from South Morocco, which also displayed specific cytoplasmic lineages, should be considered as another relic Mediterranean population.  相似文献   

20.
With the aim to select new olive cultivars with superior physical and chemical properties than the cultivar Chemlali Sfax, the present study focused on the comparison of the chemical composition and the sensory profile of the virgin olive oils (VOOs) of two wild olive trees (Oleasters K and M) with those of VOOs obtained from Chemlali Sfax and Neb Jmel olive cultivars, all growing in the coastal region of Tunisia. Despite the variability in the chemical composition (fatty acids, pigments, and phenolic and volatile compounds) and the organoleptic profile of the VOOs of the oleasters and the cultivars, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) as well as the fatty acid composition of all VOOs studied met the commercial standards. Both the α-tocopherol and phenol contents varied between the genotypes. The Neb Jmel and Oleaster K VOOs had more than two times higher total phenol levels than the Chemlali Sfax and Oleaster M VOOs. Also the contents of volatile compounds differed between the olive oils studied. Chemlali Sfax and Oleaster K oils were more abundant in aldehydes, whereas Oleaster M VOO had higher contents of alcohols. These results were confirmed by a sensorial analysis showing that the later oil was deprived for consumption despite its abundance in α-tocopherol. In conclusion, the oleasters studied revealed to be interesting, since they produced oils with good quality characteristics in terms of minor compounds (phenols and volatiles) compared to the Chemlali Sfax cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号