首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.  相似文献   

2.
Expression of Schwann cell markers by mammalian neural crest cells in vitro   总被引:3,自引:0,他引:3  
During embryonic development, neural crest cells differentiate into a wide variety of cell types including Schwann cells of the peripheral nervous system. In order to establish when neural crest cells first start to express a Schwann cell phenotype immunocytochemical techniques were used to examine rat premigratory neural crest cell cultures for the presence of Schwann cell markers. Cultures were fixed for immunocytochemistry after culture periods ranging from 1 to 24 days. Neural crest cells were identified by their morphology and any neural tube cells remaining in the cultures were identified by their epithelial morphology and immunocytochemically. As early as 1 to 2 days in culture, approximately one third of the neural crest cells stained with m217c, a monoclonal antibody that appears to recognize the same antigen as rat neural antigen-1 (RAN-1). A similar proportion of cells were immunoreactive in cultures stained with 192-IgG, a monoclonal antibody that recognizes the rat nerve growth factor receptor. The number of immunoreactive cells increased with time in culture. After 16 days in culture, nests of cells, many of which had a bipolar morphology, were present in the area previously occupied by neural crest cells. The cells in the nests were often associated with neurons and were immunoreactive for m217c, 192-IgG and antibody to S-100 protein and laminin, indicating that the cells were Schwann cells. At all culture periods examined, neural crest cells did not express glial fibrillary acidic protein. These results demonstrate that cultured premigratory neural crest cells express early Schwann cell markers and that some of these cells differentiate into Schwann cells. These observations suggest that some neural crest cells in vivo may be committed to forming Schwann cells and will do so provided that they then proceed to encounter the correct environmental cues during embryonic development.  相似文献   

3.
In the vertebrate embryo, the neurectodermal neural crest cells (NCC) have remarkably broad potencies, giving rise, after a migratory phase, to neurons and glial cells in the peripheral nervous system, and to skin melanocytes, being all designated here as “neural” derivatives. NC-derived cells also include non-neural, “mesenchymal” cell types like chondrocytes and bone cells, myofibroblasts and adipocytes, which largely contribute to the head structures in amniotes. Similar to the blood cell system, the NC is therefore a valuable model to investigate the mechanisms of cell lineage diversification in vertebrates. Whether NCC are endowed with multiple differentiation potentials or if, conversely, they are a mosaic of different committed cells is an important ongoing issue to understand the ontogeny of NC derivatives in normal development and pathological conditions. Here we focus on recent findings that established the presence in the early migratory NC of the avian embryo, of a multipotent progenitor endowed with both mesenchymal and neural differentiation capacities. This “mesenchymal-neural” clonogenic cell lies upstream of all the other NC progenitors known so far and shows increased frequency when single cell cultures are treated with the Sonic Hedgehog signaling molecule. These findings are discussed in the context of the broad potentials of NC stem cells recently evidenced in certain adult mammalian tissues.  相似文献   

4.
F9 embryonal carcinoma cells can differentiate into endoderm-like cells   总被引:10,自引:0,他引:10  
The mouse teratocarcinoma cell line, F9, has been used in many laboratories as the epitome of the “nullipotent” embryonal carcinoma cell line. However, careful inspection of F9 cultures reveals the presence of small numbers of cells which possess several properties of endoderm, particularly parietal endoderm, and which can be shown to derive from the embryonal carcinoma component. Furthermore, tumors of F9 cells include isolated patches of endoderm-like cells surrounded by a thick secretion resembling Reichert's membrane. The proportion of endoderm-like cells in F9 cultures can be increased to varying degrees by causing the cells to form aggregates and/or maintaining them at high density for several days, although the endoderm-like cells produced in these ways contribute very little to the formation of subcutaneous tumors from the resultant mixed cultures. Differentiated cell types other than endoderm are rarely observed in F9 monolayer or aggregate cultures, even after several weeks. Cloning studies support the view that most, if not all, F9 cells can differentiate, albeit at very low incidence.  相似文献   

5.
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.  相似文献   

6.
The migratory pathway of neural crest cells into the skin of mouse embryos   总被引:9,自引:0,他引:9  
The migration of neural crest derived melanoblasts into the skin of mice was studied by the ectoderm-mesoderm recombination technique. Dorsolateral skin from albino and black mouse embryos at the time of initial melanoblast invasion was separated into ectoderm and mesoderm components, recombined with each other, and grown in the chick embryo coelom for a sufficient period to allow melanin formation. Recombined skin from embryos 11 days old formed pigment only when the mesodermal component was from a genetically black embryo. The black ectoderm-albino mesoderm recombinations failed to produce pigment in all cases. At this critical age when melanoblasts were first entering the skin, they were present exclusively in the mesodermal component. Skin recombinations made from 12-day mouse embryos showed a spread of melanoblasts into the ectodermal component, and by 13 and 14 days both dermal mesoderm and epidermal ectoderm were populated by melanoblasts.  相似文献   

7.
ObjectivesThe derivation of neural crest stem cells (NCSCs) from human pluripotent stem cells (hPSCs) has been commonly induced by WNT activation in combination with dual‐SMAD inhibition.In this study, by fine‐tuning BMP signalling in the conventional dual‐SMAD inhibition, we sought to generate large numbers of NCSCs without WNT activation.Materials and methodsIn the absence of WNT activation, we modulated the level of BMP signalling in the dual‐SMAD inhibition system to identify conditions that efficiently drove the differentiation of hPSCs into NCSCs. We isolated two NCSC populations separately and characterized them in terms of global gene expression profiles and differentiation ability.ResultsOur modified dual‐SMAD inhibition containing a lower dose of BMP inhibitor than that of the conventional dual‐SMAD inhibition drove hPSCs into mainly NCSCs, which consisted of HNK+p75high and HNK+p75low cell populations. We showed that the p75high population formed spherical cell clumps, while the p75low cell population generated a 2D monolayer.We detected substantial differences in gene expression profiles between the two cell groups and showed that both p75high and p75low cells differentiated into mesenchymal stem cells (MSCs), while only p75high cells had the ability to become peripheral neurons.ConclusionsThis study will provide a framework for the generation and isolation of NCSC populations for effective cell therapy for peripheral neuropathies and MSC‐based cell therapy.  相似文献   

8.
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.  相似文献   

9.
The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.  相似文献   

10.
11.
Purified hematopoietic stem cells can differentiate into hepatocytes in vivo   总被引:194,自引:0,他引:194  
The characterization of hepatic progenitor cells is of great scientific and clinical interest. Here we report that intravenous injection of adult bone marrow cells in the FAH(-/-) mouse, an animal model of tyrosinemia type I, rescued the mouse and restored the biochemical function of its liver. Moreover, within bone marrow, only rigorously purified hematopoietic stem cells gave rise to donor-derived hematopoietic and hepatic regeneration. This result seems to contradict the conventional assumptions of the germ layer origins of tissues such as the liver, and raises the question of whether the cells of the hematopoietic stem cell phenotype are pluripotent hematopoietic cells that retain the ability to transdifferentiate, or whether they are more primitive multipotent cells.  相似文献   

12.
The lungs and esophagus are innervated by sensory neurons with somata in the nodose, jugular, and dorsal root ganglion. These sensory ganglia are derived from embryonic placode (nodose) and neural crest tissues (jugular and dorsal root ganglia; DRG). We addressed the hypothesis that the neuron's embryonic origin (e.g., placode vs. neural crest) plays a greater role in determining particular aspects of its phenotype than the environment in which it innervates (e.g., lungs vs. esophagus). This hypothesis was tested using a combination of extracellular and patch-clamp electrophysiology and single-cell RT-PCR from guinea pig neurons. Nodose, but not jugular C-fibers innervating the lungs and esophagus, responded to alpha,beta-methylene ATP with action potential discharge that was sensitive to the P2X3 (P2X2/3) selective receptor antagonist A-317491. The somata of lung- and esophagus-specific sensory fibers were identified using retrograde tracing with a fluorescent dye. Esophageal- and lung-traced neurons from placodal tissue (nodose neurons) responded similarly to alpha,beta-methylene ATP (30 microM) with a large sustained inward current, whereas in neurons derived from neural crest tissue (jugular and DRG neurons), the same dose of alpha,beta-methylene ATP resulted in only a transient rapidly inactivating current or no detectable current. It has been shown previously that only activation of P2X2/3 heteromeric receptors produce sustained currents, whereas homomeric P2X3 receptor activation produces a rapidly inactivating current. Consistent with this, single-cell RT-PCR analysis revealed that the nodose ganglion neurons innervating the lungs and esophagus expressed mRNA for P2X2 and P2X3 subunits, whereas the vast majority of jugular and dorsal root ganglia innervating these tissues expressed only P2X3 mRNA with little to no P2X2 mRNA expression. We conclude that the responsiveness of C-fibers innervating the lungs and esophagus to ATP and other purinergic agonists is determined more by their embryonic origin than by the environment of the tissue they ultimately innervate.  相似文献   

13.
To determine if neural crest cells are pluripotent and establish whether differentiation occurs in the absence of noncrest cells, a cell culture method was devised in which differentiation could be examined in clones derived from single, isolated neural crest cells. Single neural crest cells, which were isolated before the onset of in vivo migration, gave rise to three types of clones: pigmented, unpigmented, and mixed. Pigmented clones consisted of melanocytes only, whereas some unpigmented cells in mixed and unpigmented clones contained catecholamines, identifying them as adrenergic cells. Extracellular matrix derived from quail somite or chick skin fibroblast cultures stimulated adrenergic differentiation and axon formation. These results demonstrate for the first time the existence of pluripotent quail neural crest cells that give rise to at least two progeny, melanocytes and neuronal cells. They also suggest that continuous direct interactions with noncrest cells are not required for the differentiation of these two cell types. However, components of the extracellular matrix derived from noncrest cells may play an important role in expression of the adrenergic phenotype.  相似文献   

14.
15.
Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. After completion of crown formation, HERS are converted from cervical loop cells, which have the potential to generate enamel for tooth crown formation. Cervical loop cells have the potential to differentiate into ameloblasts. Generally, no new ameloblasts can be generated from HERS, however this study demonstrated that subcultured ERM can differentiate into ameloblast-like cells and generate enamel-like tissues in combination with dental pulp cells at the crown formation stage. Porcine ERM were obtained from periodontal ligament tissue by explant culture and were subcultured with non-serum medium. Thereafter, subcultured ERM were expanded on 3T3-J2 feeder cell layers until the tenth passage. The in vitro mRNA expression pattern of the subcultured ERM after four passages was found to be different from that of enamel organ epithelial cells and oral gingival epithelial cells after the fourth passage using the same expansion technique. When subcultured ERM were combined with subcultured dental pulp cells, ERM expressed cytokeratin14 and amelogenin proteins in vitro. In addition, subcultured ERM combined with primary dental pulp cells seeded onto scaffolds showed enamel-like tissues at 8 weeks post-transplantation. Moreover, positive staining for amelogenin was observed in the enamel-like tissues, indicating the presence of well-developed ameloblasts in the implants. These results suggest that ERM can differentiate into ameloblast-like cells.  相似文献   

16.
《Developmental biology》1987,121(1):182-191
We investigated whether all stem cells of Hydra can differentiate both somatic cells and gametes or if a separate germ line exists in these phylogenetically old organisms. The differentiation potential of single stem cells was analyzed by applying a statistical cloning procedure. All stem cell clones were found to differentiate somatic cells. No clone was found to contain stem cells which do not differentiate. Most of the clones could be induced to form gametes. No clone was found that produced gametes only. The results indicate that stem cells are multipotent in the sense that individual stem cells can differentiate into somatic cells as well as germ line cells.  相似文献   

17.
The origins of neural crest cells in the axolotl   总被引:4,自引:0,他引:4  
We address the question of whether neural crest cells originate from the neural plate, from the epidermis, or from both of these tissues. Our past studies revealed that a neural fold and neural crest cells could arise at any boundary created between epidermis and neural plate. To examine further the formation of neural crest cells at newly created boundaries in embryos of a urodele (Ambystoma mexicanum), we replace a portion of the neural folds of an albino host with either epidermis or neural plate from a normally pigmented donor. We then look for cells that contain pigment granules in the neural crest and its derivatives in intact and sectioned host embryos. By tracing cells in this manner, we find that cells from neural plate transplants give rise to melanocytes and (in one case) become part of a spinal ganglion, and we find that epidermal transplants contribute cells to the spinal and cranial ganglia. Thus neural crest cells arise from both the neural plate and the epidermis. These results also indicate that neural crest induction is (at least partially) governed by local reciprocal interactions between epidermis and neural plate at their common boundary.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号