首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of turbulent fluxes in the vicinity of a resonant point m/n = q(x res) in a plane edge plasma layer in a tokamak is studied by numerically analyzing the nonlinear MHD equations in a five-field electromagnetic model. Simulations show that the heat and electron turbulent fluxes decrease with increasing ion temperature at the plasma edge. It is shown that these fluxes are suppressed due to the stabilization mechanism associated with an increase in the shear of the E × B drift velocity, which in turn increases with increasing ion pressure gradient. The effect of the zonal magnetic field on turbulent transport is also investigated. It is shown that an increase in this field stabilizes edge plasma turbulence.  相似文献   

2.
The effect of variations in the key parameter of short-wavelength turbulence—the ion-acoustic Larmor radius ρ s , which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers—was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3–5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.  相似文献   

3.
The motion of a charged particle in a dipole magnetic field is considered using a quasi-adiabatic model in which the particle guiding center trajectory is approximated by the central trajectory, i.e., a trajectory that passes through the center of the dipole. A study is made of the breakdown of adiabaticity in the particle motion as the adiabaticity parameter χ (the ratio of the Larmor radius to the radius of the magnetic field line curvature in the equatorial plane) increases. Initially, for χ?0.01, the magnetic moment μ of a charged particle undergoes reversible fluctuations, which can be eliminated by subtracting the particle drift velocity. For χ?0.1, the magnetic moment μ undergoes irreversible fluctuations, which grow exponentially with χ. Numerical integration of the equations of motion shows that, during the motion of a particle from the equatorial plane to the mirror point and back to the equator in a coordinate system related to the central trajectory, the analogue of the magnetic moment μ is conserved. In the equatorial plane, this analogue undergoes a jump. The long-term particle dynamics is described in a discrete manner, by approximating the Poincaré mapping. The existence of the regions of steady and stochastic particle motion is established, and the boundary between these regions is determined. The position of this boundary depends not only on the adiabaticity parameter χ but also on the pitch angle. The calculated boundary is found to agree well with that obtained previously by using the model of a resonant interaction between particle oscillations associated with different degrees of freedom.  相似文献   

4.
The resonant excitation of plasma (Langmuir) oscillations during the microwave breakdown of a low-pressure gas is studied both analytically and numerically using the simplest uniform model. It is shown that, because of a significant delay in electron heating and cooling, this effect ensures that the plasma density increases at a high (resonant) rate, even after exceeding a critical value, and can reach a very high (overcritical) level.  相似文献   

5.
The behavior of turbulent fluxes in the vicinity of a resonant point m/n=q(x res) in a plane wall plasma layer in a tokamak is studied by numerically analyzing the nonlinear MHD equations in a four-field electromagnetic model. Simulations show that, as the electron temperature at the plasma edge increases, the intensity of turbulent particle flux decreases, reaching its minimum value, and then increases. Such behavior is found to be due to the stabilizing effect of the electron drift velocity (V y0dT e0/dx) in the equation for the longitudinal component of the magnetic potential. It is shown that, at a strong toroidal magnetic field, turbulent transport processes conform to the gyro-Bohm scaling, which gradually passes over to the Bohm scaling as the field decreases. __________ Translated from Fizika Plazmy, Vol. 30, No. 5, 2004, pp. 387–397. Original Russian Text Copyright ¢ 2004 by Shurygin.  相似文献   

6.
The generation of an Alfvén wave by an azimuthally drifting cloud of high-energy particles injected in the Earth’s magnetosphere is studied analytically. In contrast to the previous studies where the generation mechanisms associated with the resonant wave-particle interaction were considered, a nonresonant mechanism is investigated in which the wave is excited by the alternating current produced by drifting particles. It is shown that, at a point with a given azimuthal coordinate, a poloidally polarized wave, in which the magnetic field lines oscillate predominantly in the radial direction, is excited immediately after the passage of the particle cloud through this point. As the cloud moves away from that point, the wave polarization becomes toroidal (the magnetic field lines oscillate predominantly in the azimuthal direction). The azimuthal wavenumber m is defined as the ratio of the wave eigenfrequency to the angular velocity of the cloud (the drift velocity of the particles). It is shown that the amplitudes of the waves so generated are close to those obtained under realistic assumptions about the density and energy of the particles.  相似文献   

7.
It is shown experimentally that the characteristics of structural ion-acoustic turbulence in a plasma are governed primarily by the development of density gradient-driven drift oscillations. The cyclicity of appearance and disappearance of drift wave packets and ensembles of ion-acoustic solitons in a steady-state turbulent plasma, as well as the correlation between them, is determined.  相似文献   

8.
The effect of plasma density variations along ion drift trajectories on the ion velocity distribution function at a given point on a tokamak magnetic surface is studied. The observed distortion of the distribution function can be interpreted as a poloidal (or toroidal) plasma rotation that is additional to the neoclassical rotation. Due to this additional rotation, the velocity of the toroidal plasma rotation is different on the low-and high-field sides of the same magnetic surface. In the case of large ion density gradients, the poloidal rotation velocity on the same magnetic surface can have different signs at different poloidal angles.  相似文献   

9.
Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfvén velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth’s magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfvén velocity.  相似文献   

10.
In a uniform axial magnetic field, the structure of local Alfvén resonance and the resonant absorption of RF power are governed by collisions, finite ion Larmor radius effects, and electron inertia. It is shown that, in a cylindrical plasma in a constant, periodically rippled, axial magnetic field, the structure of Alfvén resonance and the absorption of RF power can strongly depend on the ripple amplitude. The conditions under which the effect in question is dominant are intrinsic, e.g., to the modular Wendelstein stellarators.  相似文献   

11.
Results of experimental studies of the effect of an external RF field on the excitation of oscillations in a magnetoplasmadynamic plasma accelerator are presented. It is found that applying an RF field can suppress the drift component of low-frequency oscillations in the ejected plasma flow. The experimental data agree with the concept of stabilization of the plasma accelerator by the magnetic component of the field generated by the RF current loop. The conditions under which the RF field stabilizes the generation of the plasma flow are determined, and the factors limiting the stabilization efficiency are revealed.  相似文献   

12.
The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge.  相似文献   

13.
A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth’s magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu–Goldberger–Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.  相似文献   

14.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

15.
The nonlinear stage of instability of an annular electron beam spatially separated from an annular plasma is investigated. The equations describing coupled waves for an arbitrary ratio between the beam and plasma densities are derived. It is shown that instability saturates at distances on the order of several inverse spatial growth rates. The saturation is caused by relativistic nonlinearity, generation of the second harmonic, and low-frequency modulation of the electromagnetic field. At larger distances, resonant generation of low-frequency beam oscillations becomes a dominant factor. In the case of a low-density beam, an expression for the maximum power of the generated plasma wave is obtained in an explicit form.  相似文献   

16.
MHD oscillations with m/n = 4/1 and 3/1 that arise at the periphery of the TUMAN-3M tokamak in the initial stage of a discharge are investigated. It is found that these oscillations lead to a significant modulation of the electron density n e , which is attributable to the accumulation of plasma within a magnetic island. Numerical simulations of the modulation structure made it possible to determine the radius of the resonant surface and the radial width of the island and to evaluate the characteristic density gradient in the island. The gradient was found to be ten times larger than that of the unperturbed profile of n e (r) near the resonant surface. This points to reduced plasma transport within the magnetic island.  相似文献   

17.
The effects of the centrifugal force and finite Larmor radius on plasma stability in the gas-dynamic trap are considered. Estimates show that the stability is governed by the strong effect of the finite Larmor radius of fast particles. If this stabilizing mechanism does not operate, then the instability ceases to be exponential when the sheared plasma rotation becomes sufficiently intense. In this case, the potential perturbation amplitude increases according to a power law, and the instability threshold remains unchanged. These effects do not influence the stability of the first azimuthal perturbation mode in a plasma with a free boundary. But when the plasma is in good electrical contact with the conducting wall of the device and when the plasma density profile is not too peaked at the axis, the first mode is stabilized by the finite Larmor radius effect because of the radial variation of the perturbed electric field.  相似文献   

18.
An initial stage of the interaction of an electron beam ring rotating along Larmor orbits in a gap between the plasma column and a circular metal chamber of a cylindrical waveguide with extraordinarily polarized electromagnetic waves of the surface type is studied. These waves propagate along the azimuthal angle across an axial magnetic field in the range above the upper hybrid frequency. Using numerical analysis of the dispersion relation, it is shown that by the aid of an appropriate choice of the shape of the plasmavacuum interface one can achieve a significant increasing of growth rates of the resonant beam instability of these waves.  相似文献   

19.
We have previously employed the Lorentz–Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that µT‐range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady‐state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase. Bioelectromagnetics 30:462–475, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
A study is made of a quarter-wave asymmetric dipole antenna in which the conducting rod is replaced by a plasma column with an electron density much higher than the critical density. The parameters of such an antenna are determined by the exited surface wave, which affects the electromagnetic field structure in the near-field zone. It is shown analytically, numerically, and experimentally that the resonant length of the plasma dipole antenna is close to one-quarter of the length of the surface wav and that the conversion efficiency of plasma antenna power into radiation can be no worse than that of a metal dipole antenna. It is also shown experimentally that the plasma in a dipole antenna can be self-consistently excited by an RF oscillator and that the excited RF oscillations can be efficiently radiated into the surrounding space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号