首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The localization of DNA in the condensed interphase chromosomes of Euglena was determined by immunoelectron microscopy. Deposits of gold particles that coincided with the localization of DNA followed threads that corresponded to the chromatin fibers. The threads were 55–80 nm in diameter and were assumed to be supersolenoids. The localization of gold deposits on chromosomes that had been sectioned in various directions suggested that the chromatin fibers coiled around the surface of chromosomes, with a wide central axial region of the chromosomes remaining free of DNA. These findings are discussed in relation to current models of chromosomal structure.  相似文献   

2.
3.
Summary The problem of localization of chromosomes in relation to each other in the interphase nucleus of human lymphocytes was investigated by analysis of chromatid and chromosome aberrations observed in lymphocyte cultures of three patients with Fanconi's anemia, one patient with Bloom's syndrome, and in Trenimon-treated (Trenimon, Bayer) normal cells. Distribution of open gaps and breaks is highly correlated with chromosome length and distribution of breaks involved in chromatid translocations in Fanconi's anemia and in Trenimontreated cells. Both correlations are much lower in Bloom's syndrome. In Fanconi's anemia and in normal cells after Trenimon-treatment, the majority of chromatid translocations are between nonhomologous chromosomes, whereas in Bloom's syndrome mainly homologous chromosomes are involved. Statistical localization of chromosomes in relation to each other in the three-dimensional space by multidimensional scaling gives results consistent with the limited amount of independent evidence.  相似文献   

4.
The chromatin ultrastructure was studied in the centromeric region of mitotic chromosomes and in interphase nuclei of mouse cells after differential staining on C-band. A new method is suggested to study centromeric region of chromosomes treated by the Giemsa banding technique. Fibers of chromosomes appeared to be packed denser in the centromeric regions of mitotic chromosomes than in arms. The disposition of chromatin fibers in the centromeric chromocentres of interphase nuclei is the same as in the centromeric regions of mitotic chromosomes.  相似文献   

5.
《The Journal of cell biology》1994,127(6):1789-1798
Condensed and late-replicating interphase chromatin in the Dipertan insect Chironomus contains a divergent type of histone H1 with an inserted KAP-KAP repeat that is conserved in single H1 variants of Caenorhabditis elegans and Volvox carteri. H1 peptides comprising the insertion interact specifically with DNA. The Chironomid Glyptotendipes exhibits a corresponding correlation between the presence of condensed chromosome sections and the appearance of a divergent H1 subtype. The centromere regions and other sections of Glyptotendipes barbipes chromosomes are inaccessible to immunodecoration by anti-H2B and anti- H1 antibodies one of which is known to recognize nine different epitopes in all domains of the H1 molecule. Microelectrophoresis of the histones from manually isolated unfixed centromeres revealed the presence of H1 and core histones. H1 genes of G. barpipes were sequenced and found to belong to two groups. H1 II and H1 III are rather similar but differ remarkably from H1 I. About 30% of the deduced amino acid residues were found to be unique to H1 I. Most conspicuous is the insertion, SPAKSPGR, in H1 I that is lacking in H1 II and H1 III and at its position gives rise to the sequence repeat SPAKSPAKSPGR. The homologous H1 I gene in Glyptotendipes salinus encodes the very similar repeat TPAKSPAKSPGR. Both sequences are structurally related to the KAPKAP repeat in H1 I-1 specific for condensed chromosome sites in Chironomus and to the SPKKSPKK repeat in sea urchin sperm H1, lie at almost the same distance from the central globular domain, and could interact with linker DNA in packaging condensed chromatin.  相似文献   

6.
Size-dependent positioning of human chromosomes in interphase nuclei   总被引:15,自引:0,他引:15       下载免费PDF全文
By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.  相似文献   

7.
Ultrastructure of interphase chromosomes   总被引:2,自引:0,他引:2  
  相似文献   

8.
A method for staining proteins by procion yellow 4RS on preparates of metaphase and interphase chromosomes is suggested. It is shown that the dye is not bound to either native or denatured DNA in solution.  相似文献   

9.
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.  相似文献   

10.
Chromosomes are not distributed randomly in nuclei. Appropriate positioning can activate (or repress) genes by bringing them closer to active (or inactive) compartments like euchromatin (or heterochromatin), and this is usually assumed to be driven by specific local forces (e.g., involving H bonds between nucleosomes or between nucleosomes and the lamina). Using Monte Carlo simulations, we demonstrate that nonspecific (entropic) forces acting alone are sufficient to position and shape self-avoiding polymers within a confining sphere in the ways seen in nuclei. We suggest that they can drive long flexible polymers (representing gene-rich chromosomes) to the interior, compact/thick ones (and heterochromatin) to the periphery, looped (but not linear) ones into appropriately shaped (ellipsoidal) territories, and polymers with large terminal beads (representing centromeric heterochromatin) into peripheral chromocenters. Flexible polymers tend to intermingle less than others, which is in accord with observations that gene-dense (and so flexible) chromosomes make poor translocation partners. Thus, entropic forces probably participate in the self-organization of chromosomes within nuclei.  相似文献   

11.
12.
13.
Proteins of interphase and metaphase chromosomes compared   总被引:13,自引:0,他引:13  
  相似文献   

14.
Metaphase chromosomes of the Chinese hamster differentially-condensed under the influence of a) 5-bromdeoxyuridine, b) colcemide, and c) cold, were stained with acridine-orange (AO) in concentrations of 1.5 X 10(-7) to 3 X 10(-5) g/ml at pH 4.1 to 8.5. It was found that stretched chromosomal segments fluoresced in the orange/red part of the spectrum, whereas normally condensed ones--were green. The colour distribution along the chromosome depended mainly on the AO concentration and the exposure in the UV-light, and was independent of pH and molarity of the buffer. Apparently this phenomenon cannot be attributed to the uneven denaturation of the chromosomal DNA, but rather depends on structural and/or chemical differences between euchromatin and heterochromatin.  相似文献   

15.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

16.
Prematurely condensed chromosomes (PCC) have been obtained by polyethylene glycol (PEG) induced fusion in suspension of the Chinese hamster metaphase cultured cells with those in interphase. As alternative approach the PEG-fusion of the Chinese hamster asynchronous culture cells in monolayer with subsequent incubation in free medium was used. A comparative cytofluorimetric investigation of PCC and chromatin of the interphase nuclei of corresponding ploidy has shown some increase (up to 10%) of acridine orange and olivomycin binding with PCC chromatin. A similar slight increase in low molecular weight ligands binding with chromatin was also found in mitotic chromosomes. The data obtained confirm the opinion about the similarity of events taking place in chromatin during physiological mitosis and premature chromosome condensation. The cytochemical study of chromatin availability to low molecular weight ligands can be used as a criterion for judging on the properties of the artificially condensed chromatin.  相似文献   

17.
Length measurements on C-banded prematurely condensed no. 1 human chromosomes of G0 and G1 lymphocytes, as well as of synchronized G1 HEp cells revealed that (i) no length difference exists between mitotic chromosomes and G0 chromosomes; (ii) 1 h after PHA stimulation a clear increase in length is detectable; (iii) in isolated cases an increase by the factor 5 can be observed during G1; (iv) the increase is significantly less for constitutive heterochromatin than for euchromatin. The possibility is discussed that these conformational changes of chromatin reflect physiological differences, i.e. the rate of RNA synthesis during interphase.  相似文献   

18.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

19.
V P Wray  S C Elgin    W Wray 《Nucleic acids research》1980,8(18):4155-4163
Metaphase chromosomal and interphase chromatin proteins from cells of two species have been compared by polyacrylamide gel electrophoresis. Consistent, common changes in the quantitative distribution of the nonhistone chromosomal proteins are observed in both species. Proteins of ca. 65,000 and 68,000 MW are enriched in interphase chromatin while proteins of ca. 50,000 and 200,000 are more prominent components of metaphase chromosomes. A group of proteins of 90,000-100,000 are also increased in metaphase chromosomes compared to interphase chromatin. By two dimensional gel analysis, the most abundant proteins from chromosomes of both cell types are similar, suggesting a structural role for these nonhistone proteins (1).  相似文献   

20.
The state of the chromosomes in the interphase nucleus   总被引:8,自引:2,他引:6  
In the living interphase nucleus no chromosomal structures are visible. Yet in the injured cell and after treatment with most histological fixatives chromatin structures become apparent. Under certain conditions this appearance of structure in the living interphase nucleus is reversible. We have found that this change in the interphase nucleus is the result of a change in the state of the chromosomes. In the living nucleus the chromosomes are in a greatly extended state, filling the entire nucleus. Upon injury the chromosomes condense and therefore become visible. At the same time the nuclear volume decreases. This behavior of the chromosomes is connected with their content of desoxyribonucleic acid (DNA). This view is based on the following observations: (a) Distribution of DNA in the Nucleus.-(1) The living interphase nucleus of uninjured cells absorbs diffusely at 2537 A. No chromosomal structures are visible in ultraviolet photographs unless they are also distinct in ordinary light. If the chromosomes are made to condense they become visible and the absorption at 2537 A is now localized in these structures. (2) After fixation with formalin and osmic acid interphase nuclei stain diffusely with Feulgen. These fixatives preserve the extended state of the chromosomes. (3) If nuclei are teased out in non-electrolytes (sucrose, glycerin) the chromosomes are extended. Such nuclei stain homogeneously with methyl green. On adding salts the chromosomes condense and the methyl green is now restricted to the visible structures. (b) Extension and Condensation of Isolated Chromosomes.-When chromosomes isolated from interphase nuclei of calf thymus are suspended in sucrose, their volume is four to five times larger than in saline, but they retain their characteristic shapes. Chromosomes from which DNA and histone have been removed do not show this reversible extension and condensation, neither do lampbrush chromosomes of frog oocytes which contain very little DNA. During mitosis a partial condensation of the DNA occurs in prophase, so that the mitotic chromosomes now occupy a much smaller volume of the nucleus. At telophase the chromosomes swell again to fill the entire nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号