首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Based on PCR strategies and expression studies, we define the genomic organization of the FUT8b gene. This gene encodes the only known mammalian enzyme transferring fucose in an alpha1-->6 linkage on the asparagine-branched GlcNAc residue of the chitobiose unit of complex N:-glycans. The intron/exon organization of the bovine coding sequence determines five successive functional domains. The first exon encodes a domain homologous to cytoskeleton proteins, the second presents a proline-rich region including a motif XPXPPYXP similar to the peptide ligand of the SH3-domain proteins, the third encodes a gyrase-like domain (an enzyme which can bind nucleotides), and the fourth encodes a peptide sequence homologous to the catalytic domain of proteins transferring sugars. Finally, the last exon encodes a domain homologous to the SH3 conserved motif of the SH2-SH3 protein family. This organization suggests that intramolecular interactions might give a tulip-shaped scaffolding, including the catalytic pocket of the enzyme in the Golgi lumen. Deduced from the published sequence of chromosome 14 (AL109847), the human gene organization of FUT8 seems to be similar to that of bovine FUT8b, although the exon partition is more pronounced (bovine exons 1 and 2 correspond to human exons 1-6). The mosaicism and phylogenetic positions of the alpha6-fucosyltransferase genes are compared with those of other fucosyltransferase genes.  相似文献   

2.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type I motifs) family of proteases plays a role in pathological conditions including arthritis, cancer, thrombotic thrombocytopenic purpura and the Ehlers-Danlos type VIIC and Weill-Marchesani genetic syndromes. Here, we report the first crystal structures for a member of the ADAMTS family, ADAMTS-1. Originally cloned as an inflammation-associated gene, ADAMTS-1 has been shown to be involved in tissue remodelling, wound healing and angiogenesis. The crystal structures contain catalytic and disintegrin-like domains, both in the inhibitor-free form and in complex with the inhibitor marimastat. The overall fold of the catalytic domain is similar to related zinc metalloproteinases such as matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinases). The active site contains the expected organisation of residues to coordinate zinc but has a much larger S1' selectivity pocket than ADAM33. The structure also unexpectedly reveals a double calcium-binding site. Also surprisingly, the previously named disintegrin-like domain showed no structural homology to the disintegrin domains of other metalloproteinases such as ADAM10 but is instead very similar in structure to the cysteine-rich domains of other metalloproteinases. Thus, this study suggests that the D (for disintegrin-like) in the nomenclature of ADAMTS enzymes is likely to be a misnomer. The ADAMTS-1 cysteine-rich domain stacks against the active site, suggesting a possible regulatory role.  相似文献   

3.
ADAM-TS/metallospondin genes encode a new family of proteins with structural homology to the ADAM metalloprotease-disintegrin family. However, unlike other ADAMs, these proteins contain thrombospondin type 1 (TSP1) repeats at the carboxy-terminal end and are secreted proteins instead of being membrane bound. Members of the ADAM-TS family have been implicated in the cleavage of proteoglycans, the control of organ shape during development, and the inhibition of angiogenesis. We have cloned a new member of the ADAM-TS/metallospondin family designated here as ADAMTS9. This protein has a metalloprotease domain, a disintegrin-like domain, one internal TSP1 motif, and three carboxy-terminal TSP1-like submotifs. In contrast to other ADAM-TS family members, ADAMTS9 is expressed in all fetal tissues examined as well as some adult tissues. Using FISH and radiation hybrid analysis, we have localized ADAMTS9 to chromosome 3p14.2-p14.3, an area known to be lost in hereditary renal tumors.  相似文献   

4.
5.
6.
7.
Zhang Y  Gorry MC  Post JC  Ehrlich GD 《Gene》1999,230(1):69-79
The human fibroblast growth factor receptor (FGFR) genes play important roles in normal vertebrate development. Mutations in the human FGFR2 gene have been associated with many craniosynostotic syndromes and malformations, including Crouzon, Pfeiffer, Apert, Jackson-Weiss, Beare-Stevenson cutis gyrata, and Antley-Bixler syndromes, and Kleeblaatschadel (cloverleaf skull) deformity. The mutations identified to date are concentrated in the previously characterized region of FGFR2 that codes for the extracellular IgIII domain of the receptor protein. The search for mutations in other regions of the gene, however, has been hindered by lack of knowledge of the genomic structure. Using a combination of genomic library screening, long-range PCR, and genomic walking, we have characterized the genomic structure of nearly the entire human FGFR2 gene, including a delineation of the organization and size of all introns and exons and determination of the DNA sequences at the intron/exon boundaries. Comparative analysis of the human FGFR gene family reveals that the genomic organization of the FGFRs is relatively conserved. Moreover, alignment of the amino acid sequences shows that the four corresponding proteins share 46% identity overall, with up to 70% identity between individual pairs of FGFR proteins. However, the FGFR2 gene contains an additional exon not found in other members of the family, and it also has much larger intronic sequences throughout the gene. Remarkable similarities in genomic organization, intron/exon boundaries, and intron sizes are found between the human and mouse FGFR2 genes. Knowledge gained from this study of the human FGFR2 gene structure may prove useful in future screening studies designed to find additional mutations associated with craniosynostotic syndromes, and in understanding the molecular and cell biology of this receptor family.  相似文献   

8.
Structure of the murine complement factor H gene   总被引:3,自引:0,他引:3  
Factor H is a regulatory protein of the alternative pathway of complement activation comprised of 20 tandem repeating units of 60 amino acids each. A factor H cDNA clone was used to identify 17 genomic clones from a cosmid library. Four clones were selected for analysis of intron/exon junctions and 5' and 3' regions of the gene and for mapping of the exons. The factor H gene was found to be comprised of 22 exons. Each repeating unit is encoded by one exon, except the second repeat, which is coded by two exons; the leader sequence is encoded by a separate exon. The exons range in size from 77 to 210 base pairs (bp) and average 178 bp. They span a region of approximately 100 kilobases (kb) on chromosome 1. The leader sequence exon is 26 kb upstream of the first repeat exon, representing the largest intron. The other introns range in size from 86 bp to 12.9 kb, and the average intron size is 4.7 kb. Analysis of the genomic organization of the factor H gene has provided insight into the protein structure and will enable the construction of deletion mutants for functional studies.  相似文献   

9.
Evolution of the fibronectin gene. Exon structure of cell attachment domain   总被引:6,自引:0,他引:6  
Genomic DNA coding for human fibronectin was identified from a human genomic library by screening with a cDNA clone that specifies the cell attachment domain in human fibronectin. Two clones which together provided more than 22 kilobase pairs of the fibronectin gene were isolated. The exons in this region correspond to approximately 40% of the coding region in the fibronectin gene. They code for the middle region of the polypeptide which consists of homologous repeating segments of about 90 amino acids called type III homologies. Nucleotide sequence of the portion of the gene corresponding to the cell attachment domain showed that the Arg-Gly-Asp-Ser cell attachment site is encoded within a 165-base pair exon. This exon, together with a 117-base pair exon codes for a homology unit. Analysis of the exon/intron organization in some of the neighboring homology units indicated a similar 2-exon structure. An exception to this pattern is that a single large exon codes for a type III homology unit that, due to alternative mRNA splicing, exists in some but not all fibronectin polypeptides. The introns separating the coding sequences for the type III homology units are located in conserved positions whereas the introns that interrupt the coding sequence within the units are in a variable position generating variations in the size of the homologous exons. This exon/intron organization suggests that the type III homology region of the fibronectin gene has evolved by a series of gene duplications of a primordial gene consisting of two exons. Specification of one of these homology units to the cell attachment domain has occurred within this exon/intron arrangement.  相似文献   

10.
11.
H H Lin  D K Ann 《Genomics》1991,10(1):102-113
  相似文献   

12.
The ADAM family of membrane-anchored proteins has a unique domain structure, with each containing a disintegrin and metalloprotease (ADAM) domain. We have isolated mouse and human cDNAs encoding a novel member of the ADAM family. The mouse and human predicted proteins consisted of 797 and 813 amino acids, respectively, and they shared 70% homology of the entire amino acid sequence. The mouse ADAM gene exists at a single gene locus. The human gene was ubiquitously expressed in tissues other than liver, was mapped to human chromosome 20p13, and was found to consist of 22 exons. Both proteins have domain organization identical to that of previously reported members of the ADAM family, and contain the typical zinc-binding consensus sequence (HEXGHXXGXXHD) in their metalloprotease domain and a pattern of cysteine localization (C(x)(3)C(x)(5)C(x)(5)CxC(x)(8)C) in their EGF-like domain that is typical of an EGF-like motif. The human protein shows homology with Xenopus ADAM13 (44%), human ADAM19 (40%), and human ADAM12 (39%). From the results of phylogenic analysis based on primary amino acid sequence and distribution of the mRNA, these novel ADAM genes were thus named ADAM33.  相似文献   

13.
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.  相似文献   

14.
The genomic structure of integrins is important to our understanding of the evolution of this complex family. The alpha subunit of the leukocyte integrin p150,95 (CD11c) is a transmembrane polypeptide of 1144 residues whose long extracellular region contains three putative divalent cation binding repeats and a 200- amino acid inserted or "I" domain. The p150,95 alpha subunit gene extends over 25 kilobases and is comprised of at least 31 exons grouped in five clusters. The I domain, which is only present in some integrins and is homologous to domains in von Willebrand factor, cartilage matrix protein, complement factor B and the alpha 1 and alpha 2 chains of collagen type VI, is distributed in four exons. Each one of the three divalent cation binding repeats is encoded by a separate exon. Surprisingly, a sequence homologous to the first two putative divalent cation binding repeats is present in an inverted orientation in the intron following the last exon of the I domain. Both the signal peptide and the transmembrane domain are split in two exons. Putative proteolytic cleavage sequences in other integrin alpha subunits align as inserts within the p150,95 alpha subunit gene falling at exon boundaries. The organization of the p150,95 alpha subunit gene provides further insights into the structure and evolution of the integrins.  相似文献   

15.
The intron/exon organization of the human gene for glycogen phosphorylase has been determined. The segments of the polypeptide chain that corresponds to the 19 exons of the gene are examined for relationships between the three-dimensional structure to the protein and gene structure. Only weak correlations are observed between domains of phosphorylase and exons. The nucleotide binding domains that are found in phosphorylase and other glycolytic enzymes are examined for relationships between exons of the genes and structures of the domains. When mapped to the three-dimensional structures, the intron/exon boundaries are shown to be widely distributed in this family of protein domains.  相似文献   

16.
We identified a novel metalloprotease, which could be responsible for cleaving the Tyr842-Met843 peptide bond of von Willebrand factor (vWF). This metalloprotease was purified from Cohn Fraction-I precipitate of human pooled plasma by the combination of gel filtration, DEAE chromatography, and preparative polyacrylamide gel electrophoresis in the presence of SDS. The NH2-terminal amino acid sequence of the isolated protein was: AAGGILHLELLVAVGPDVFQAHQEDTRRY. Based on this sequence, we searched human genomic and EST databases, and identified compatible nucleotide sequences. These results suggested that this protein is a novel metalloprotease, a member of the family of a disintegrin and metalloprotease with thrombospondin type-1 motifs (ADAMTS), and its genomic DNA was mapped to human chromosome 9q34. Multiple human tissue northern blotting analysis indicated that the mRNA encoding this protease spanned approximately 5 kilobases and was uniquely expressed in the liver. Furthermore, we determined the cDNA sequence encoding this protease, and found that this protease was comprised of a signal peptide, a proregion followed by the putative furin cleavage site, a reprolysin-type zinc-metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 (TSP1) motif, a cysteine-rich region, a spacer domain, and COOH-terminal TSP1 motif repeats.  相似文献   

17.
18.
19.
The N-terminal sequence of the major human serum mannose-binding protein (MBP1) was shown to be identical at all positions determined with the amino acid sequence predicted from a cDNA clone of a human liver MBP mRNA. An oligonucleotide corresponding to part of the sequence of this cDNA clone was used to isolate a cosmid genomic clone containing a homologous gene. The intron/exon structure of this gene was found to closely resemble that of the gene encoding a rat liver MBP (MBP A). The nucleotide sequence of the exons differed in several places from that of the human cDNA clone published by Ezekowitz, Day & Herman [(1988) J. Exp. Med. 167, 1034-1046]. The MBP molecule comprises a signal peptide, a cysteine-rich domain, a collagen-like domain, a 'neck' region and a carbohydrate-binding domain. Each domain is encoded by a separate exon. This genomic organization lends support to the hypothesis that the gene arose during evolution by a process of exon shuffling. Several consensus sequences that may be involved in controlling the expression of human serum MBP have been identified in the promoter region of the gene. The consensus sequences are consistent with the suggestion that this mammalian serum lectin is regulated as an acute-phase protein synthesized by the liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号