首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer.  相似文献   

2.
A comprehensive population and medical-genetic study was carried out in ten districts and two cities in the Karachay-Cherkess Republic (Russia). As a result, 57 patients with phenylketonuria were revealed. PAH gene genotypes for 40 probands and their diseased and healthy relatives were determined. The mutation spectrum of the PAH gene in the Karachay-Cherkess Republic was investigated. The major mutation in this region is R261X with allelic frequency of 68.4%. We elaborated a convenient system for detection of six PAH gene mutations common in the Karachay-Cherkess Republic, with the total information content of the system being 89.9%. As a result of processing the clinical data, association of the diet and phenylalanine levels in the blood was verified. Genophenotypic analysis confirms the association of the residual activity of phenylalanine hydroxylase and the severity of the disease. It is shown that common mutation R261X is severe and that patients who are homozygous for this mutation have classical phenylketonuria (PKU).  相似文献   

3.
Phenylketonuria: detection of a frequent haplotype 4 allele mutation   总被引:11,自引:4,他引:7  
Summary By sequence analysis of 94 phenylketonuria (PKU) alleles using polymerase chain reaction (PCR) based techniques, we identified a G to A transition in exon 5 of the human phenylalanine hydroxylase gene. This base substitution predicts an Arg158Glu158 amino acid exchange and is strongly associated with the mutant haplotype 4 PKU allele.  相似文献   

4.
To simultaneously assess the effects of exonic mutations on RNA splicing and protein functions, we report here an intron-inclusive cDNA (Intinc) expression system. As a test model, twenty-four mutations in exon 9 of the phenylalanine hydroxylase (PAH) gene were examined in an Intinc expression plasmid composed of the PAH cDNA with the exon 9 flanked by its authentic introns. When the PAH enzyme activities from the Intinc plasmid-transfected cells were compared to those of a standard cDNA expression system, five mutations resulted in significant relative differences in PAH activities attributed to altered exon 9-inclusive mRNA levels. Two of the mutations affected exon recognition probably through splice site modifications and the remaining three affected experimentally verified exon splicing enhancer (ESE) motifs. The Intinc expression system allows not only a better link between mutation genotype to disease phenotype but also contributes to further understanding of molecular mechanisms of deleterious effects of mutations.  相似文献   

5.
Summary Two previously unidentified mutations at the phenylalanine hydroxylase locus were found during a study of the relationship between genotype and phenotype in phenylketonuria and hyperphenylalaninemia. One mutation eliminates the BamHI site in exon 7 and the other eliminates the HindIII site in exon 11 of the phenylalanine hydroxylase gene. They were suspected because of deviating restriction fragment patterns and confirmed by amplification, via the polymerase chain reaction, of exon 7 and exon 11, respectively, followed by digestion with the appropriate restriction enzyme. Direct sequencing of amplified mutant exon 7 revealed a G/C to T/A transversion at the first base of codon 272, substituting a GGA glycine codon for a UGA stop codon. Direct sequencing of amplified mutant exon 11 revealed a deletion of codon 364, a CTT leucine codon. The exon 7 mutation can be expected to result in a truncated protein and the exon 11 mutation in the elimination of an amino acid in the catalytic region of the enzyme. A patient who is a compound heterozygote for these two mutations has classical phenylketonuria. It is concluded that each of the two mutations leads to a profound loss of enzymatic activity. The segregation of these mutations with disease alleles in 4 and 2 families, respectively, supports the hypothesis that multiple mutations at the phenylalanine hydroxylase locus explain the variable phenylalanine tolerance in patients with phenylalanine hydroxylase deficiency.  相似文献   

6.
《Autophagy》2013,9(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr?/? mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr?/? mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr?/? mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr?/? mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.  相似文献   

7.
Kwak SS  Suk J  Choi JH  Yang S  Kim JW  Sohn S  Chung JH  Hong YH  Lee DH  Ahn JK  Min H  Fu YM  Meadows GG  Joe CO 《Autophagy》2011,7(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.Key words: tetrahydrobiopterin, autophagy, mTORC1, tyrosine, phenylalanine, phenylketonuria, Akt, AMPK  相似文献   

8.
Phenylketonuria (PKU), the most frequent disorder of amino acid metabolism, is caused by mutations in human phenylalanine hydroxylase gene (PAH), leading to deficient enzyme activity. Previously reported but uncharacterized PAH gene mutation, p.S231F (c.692C > T), was detected in Serbian patients with classical PKU. We analyzed p.S231F PAH protein in prokaryotic (Escherichia coli) and eukaryotic expression system (hepatoma cells). In both systems the mutant enzyme was unstable. Residual enzyme activity in vitro was ~1%. Mutation p.S231F PAH was not activated by pre-incubation with phenylalanine substrate. We found no GroEL/GroES chaperone effect and slightly positive effect of the (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) on the stabilization of the protein structure. Our findings were in accordance with severe patients’ phenotypes. In conclusion, p.S231F should be classified as a functionally null PAH gene mutation as it drastically reduces stability and activity of the PAH enzyme in vitro.  相似文献   

9.
To date, the efficacy of the phenylalanine hydroxylase (PAH) cofactor is proved for the treatment of both BH4-dependent hyperphenylalaninemia and phenylketonuria patients with mutations in the PAH gene. Since the patient’s response depends on the presence of residual PAH enzyme activity, it is advisable to search for mutations in the PAH gene to identify the potential responders and nonresponders to therapy. Four hundred thirty-five phenylketonuria patients from 13 regions of the Russian Federation were genotyped in order to identify responders and nonresponders to tetrahydrobiopterin (BH4) therapy. According to the results of this study, the number of probable nonresponders to the BH4 treatment exceeds 50% owing to a higher overall allelic frequency of “severe” PAH gene mutations. Responder patients with two “mild” mutations in the PAH gene were identified (1.6%).  相似文献   

10.
During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.  相似文献   

11.
The Tmhs gene codes for a tetraspan transmembrane protein that is expressed in hair cell stereocilia. We previously showed that a spontaneous missense mutation of Tmhs underlies deafness and vestibular dysfunction in the hurry-scurry (hscy) mouse. Subsequently, mutations in the human TMHS gene were shown to be responsible for DFNB67, an autosomal recessive nonsyndromic deafness locus. Here we describe a genetically engineered null mutation of the mouse Tmhs gene (Tmhs tm1Kjn ) and show that its phenotype is identical to that of the hscy missense mutation, confirming the deleterious nature of the hscy cysteine-to-phenylalanine substitution. In the targeted null allele, the Tmhs promoter drives expression of a lacZ reporter gene. Visualization of β-galactosidase activity in Tmhs tm1Kjn heterozygous mice indicates that Tmhs is highly expressed in the cochlear and vestibular hair cells of the inner ear. Expression is first detectable at E15.5, peaks around P0, decreases slightly at P6, and is absent by P15, a duration that supports the involvement of Tmhs in stereocilia development. Tmhs reporter gene expression also was detected in several cranial and cervical sensory ganglia, but not in the vestibular or spiral ganglia. We also describe a new nontargeted mutation of the Tmhs gene, hscy-2J, that causes abnormal splicing from a cryptic splice site within exon 2 and is predicted to produce a functionally null protein lacking 51 amino acids of the wild-type sequence.  相似文献   

12.
N-ethyl-N-nitrosourea (ENU) mutagenesis is a phenotype-driven approach with potential to assign function to every locus in the mouse genome. In this article, we describe a new mutation, Pug, as a mouse model for X-linked hypophosphatemic rickets (XLH) in human. Mice carrying the Pug mutation exhibit abnormal phenotypes including growth retardation, hypophosphatemia and decreased bone mineral density (BMD). The new mutation was mapped to X-chromosome between 65.4 cM and 66.6 cM, where Phex gene resides. Sequence analysis revealed a unique T-to-C transition mutation resulting in Phe-to-Ser substitution at amino acid 80 of PHEX protein. In vitro studies of Pug mutation demonstrated that PHEXpug was incompletely glycosylated and sequestrated in the endoplasmic reticulum region of cell, whereas wild-type PHEX could be fully glycosylated and transported to the plasma membrane to exert its function as an endopeptidase. Taken together, the Pug mutant directly confirms the role of Phex in phosphate homeostasis and normal skeletal development and may serves as a new disease model of human hypophosphatemic rickets.  相似文献   

13.
Thereeler Albany2mutation (Relnrl-Alb2) in the mouse is an allele ofreelerisolated during a chlorambucil mutagenesis screen. Homozygous animals had drastically reduced concentrations ofreelinmRNA, in which an 85-nt exon was absent. At the genomic level, the mutation was shown to be due to an intracisternal A-particle insertion leading to exon skipping. This appears to be the first observation of retrotransposon insertion during chlorambucil mutagenesis.  相似文献   

14.
A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to a proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAH cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM- phenotype. Together with the other mutations recently reported in the PAH gene, the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level.  相似文献   

15.
This paper presents the results of a molecular genetic study on the phenylalanine hydroxylase (PAH) gene among phenylketonuria (PKU) patients and their family members residing in Kemerovo oblast and the Sakha Republic. To reveal the PAH gene mutations, the researchers applied exon amplification and a direct determination of their nucleotide sequences. The study has revealed both well-known mutations (R158Q, R252W, R261Q, P281L, IVS10 ? 11G > A, R408W, and IVS12 + 1G > A) and some rarely encountered ones (IVS2 + 5G > A, R155H, Y168H, W187R, E221-D222 > Efs, A342T, Y386C, and IVS11 + 1G > C). Some of the studied populations with a mixed ethnic ancestry have been shown to demonstrate a wider spectrum of their PKU-associated alleles.  相似文献   

16.
A new mouse mutant, punk rocker (allele symbol Kcne1 pkr ), arose spontaneously on a C57BL/10J inbred strain background and is characterized by a distinctive head-tossing, circling, and ataxic phenotype. It is also profoundly and bilaterally deaf. The mutation resides in the Kcne1 gene on Chromosome (Chr) 16 and has been identified as a single base change within the coding region of the third exon. The C to T nucleotide substitution causes an arginine to be altered to a termination codon at amino acid position 67, and predictably this will result in a significantly truncated protein product. The Kcne1 pkr mutant represents the first spontaneous mouse model for the human disorder, Jervell and Lange-Nielsen syndrome, associated with mutations in the homologous KCNE1 gene on human Chr 21. Received: 20 April 2000 / Accepted: 2 June 2000  相似文献   

17.
Chocolate coated cats: TYRP1 mutations for brown color in domestic cats   总被引:2,自引:0,他引:2  
Brown coat color phenotypes caused by mutations in tyrosinase-related protein-1 (TYRP1) are recognized in many mammals. Brown variations are also recognized in the domestic cat, but the causative mutations are unknown. In cats, Brown, B, has a suggested allelic series, B > b > bl. The B allele is normal wild-type black coloration. Cats with the brown variation genotypes, bb or bbl, are supposedly phenotypically chocolate (aka chestnut) and the light brown genotype, blbl, are supposedly phenotypically cinnamon (aka red). The complete coding sequence of feline TYRP1 and a portion of the 5′ UTR was analyzed by direct sequencing of genomic DNA of wild-type and brown color variant cats. Sixteen single nucleotide polymorphisms (SNPs) were identified. Eight SNPs were in the coding regions, six are silent mutations. Two exon 2 on mutations cause amino acid changes. The C to T nonsense mutation at position 298 causes an arginine at amino acid 100 to be replaced by the opal (UGA) stop codon. This mutation is consistent with the cinnamon phenotype and is the putative light brown, bl, mutation. An intron 6 mutation that potentially disrupts the exon 6 downstream splice-donor recognition site is associated with the chocolate phenotype and is the putative brown, b, mutation. The allelic series was confirmed by segregation and sequence analyses. Three microsatellite makers had significant linkage to the brown phenotype and two for the TYRP1 mutations in a 60-member pedigree. These mutations could be used to identify carriers of brown phenotypes in the domestic cat.  相似文献   

18.
Three types of polymorphisms in exon 14 in porcine Mx1 gene   总被引:8,自引:0,他引:8  
Much is known about the antiviral activity of Mx proteins in species such as mouse and human. In the mouse, loss of resistibility to influenza virus has been shown to be due to specific polymorphisms in the Mx gene. This gene is therefore an interesting candidate gene for disease resistance in farm animals. The porcine Mx1 gene has already been identified and characterized based on its homology with mouse Mx1; however, until now no evidence of polymorphisms in the porcine gene has been reported. In this study, we have found two new polymorphisms in exon 14 of porcine Mx1 by DNA sequencing and confirmed their presence in different breeds, using polymerase chain reaction (PCR)–restriction fragment length polymorphisms (RFLP) with NarI and NaeI restriction enzymes. On the basis of the deduced amino acid sequence, one allele contains a deletion that may result in a frameshift to yield several amino acid substitutions and extension of the carboxyl terminal region of Mx1 protein. The deletion allele, Mx1 c, was found to be segregating in Landrace, Berkshire, Duroc, Hampshire, and Yucatan miniature pig. A second point mutation, Mx1 b, was detected in Meishan and two Vietnamese native pig breeds. All other breeds tested were fixed for the Mx1 a allele that is identical to the sequence reported previously. It will be interesting to determine if the Mx1 c deletion is associated with variation in resistance to the myxovirus family in the pig.  相似文献   

19.
Multiple alleles of the quaking (qk) gene have a variety of phenotypes ranging in severity from early embryonic death to viable dysmyelination. A previous study identified a candidate gene, QKI, that contains an RNA-binding domain and encodes at least three protein isoforms (QKI-5, -6 and -7). We have determined the genomic structure of QKI, identifying an additional alternative end in cDNAs. Further we have examined the exons and splice sites for mutations in the lethal allelesqkl-1, qkkt1, qkk2,andqkkt3.The mutation inqkl-1creates a splice site in the terminal exon of the QKI-6 isoform. Missense mutations in the KH domain and the QUA1 domains inqkk2andqkkt3,respectively, indicate that these domains are of critical functional importance. Although homozygotes for each ENU induced allele die as embryos, their phenotypes as viable compound heterozygotes with qkvdiffer. Compound heterozygousqkvanimals carryingqkkt1, qkk2,andqkkt3all exhibit a permanent quaking phenotype similar to that ofqkv/qkvanimals, whereasqkv/qkl-1animals exhibit only a transient quaking phenotype. Theqkl-1mutation eliminates the QKI-5 isoform, showing that this isoform plays a crucial role in embryonic survival. The transient quaking phenotype observed inqkv/qkl-1mice indicates that the QKI-6 and QKI-7 isoforms function primarily during myelination, but that QKI-5 may have a concentration-dependent role in early myelination. This mutational analysis demonstrates the power of series of alleles to examine the function of complex loci and suggests that additional mutant alleles of quaking could reveal additional functions of this complex gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号