首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Growing hyphal tips of higher fungi contain an organized assemblage of secretory vesicles and other cell components collectively known as the Spitzenkörper. Until now, the Spitzenkörper has been portrayed as a single spheroid complex located near the apical cell wall. This study demonstrates the occurrence of multiple Spitzenkörper in growing hyphal apices imaged by video-enhanced phase-contrast microscopy. In addition to the main Spitzenkörper, smaller satellite Spitzenkörper arise a few micrometers behind the apical pole. Four developmental stages were identified: (a) the satellites first appeared as faint phase-dark plaques next to the plasma membrane, (b) gradually increased in size and assumed an ovoid profile, (c) they migrated to the hyphal apex, and (d) finally they merged with the main Spitzenkörper. After the merger, the main Spitzenkörper temporarily increased in size. Satellites were observed in 14 fungi, most of which had relatively large (5–10 m diam.), fast-growing hyphae (2–33 m/min elongation rate). The average frequency of in-focus satellites was 7+/min forFusarium culmorum and 11+/min forTrichoderma viride. As with the main Spitzenkörper, satellites were present only in growing cells. They were transient and remained visible for 3–8 s before merging with the main Spitzenkörper. Within the hyphae, satellites travelled up to six times faster than the average cell elongation rate. Multiple satellites sometimes occurred simultaneously; up to three were seen within a hyphal apex at the same time. Localized cell enlargement occurred next to stationary satellites, suggesting that satellite Spitzenkörper are functional as sources of new cell surface before they reach the main Spitzenkörper; therefore, they account for some variations in the profiles of the growing hyphae. By electron microscopy, satellites consisted of small clusters of apical vesicles surrounding a group of microvesicles located next to the plasma membrane. The identification and behavior of the satellites represent clear evidence of directional mass transport of vesicles toward the hyphal apex. Our observations indicate that satellites are a common phenomenon in growing hyphal apices of septate fungi and that they contribute to growth of the hyphal apex.Abbreviations VSC vesicle supply center  相似文献   

2.
Summary The Spitzenkörper, located in the apex of growing hyphae of septate fungi, has been portrayed previously as a spheroid complex containing a cluster of apical (secretory) vesicles which sometimes encloses a differentiated core area. With the aid of computer-enhanced video microscopy and phase-contrast optics, we studied 32 fungi in the Ascomycetes, Deuteromycetes, Hyphomycetes, Basidiomycetes, and Agonomycetes. The Spitzenkörper appeared as a highly dynamic and pleomorphic multicomponent complex capable of changing shape, size, and position within the hyphal apex during growth. The main theme of this study is to demonstrate two kinds of morphological diversity/variation in Spitzenkörper from diverse fungi: (a) inherent diversity — Spitzenkörper features characteristic of particular fungi, and (b) dynamic pleomorphism — gradual or rapid changes in size, shape, and position of the Spitzenkörper within a single hyphal tip. Several components associated with the Spitzenkörper were identified: (a) vesicle cluster, (b) vesicle cloud, (c) differentiated core region(s) within the Spitzenkörper, (d) apical granules, (e) cytoplasmic filaments. Eight morphological patterns of Spitzenkörper organization are described in the higher fungi based on the shape and distribution of their components. An additional (ninth) pattern was recognized in the chytridiomyceteAllomyces macrogynous from recent work by others. All these patterns appeared to be conserved at the genus level. In all patterns but one, a core region was observed by light microscopy. The Spitzenkörper not only exhibited spontaneous dynamic pleomorphism but also reacted to stress conditions (light, mechanical, and electrical fields). These reactions include migration of the Spitzenkörper back into the subapical zone and/or disassembly of its components. The understanding and conceptualization of this dynamic complex is problematic and should remain flexible enough to encompass the diversity of Spitzenkörper patterns and the dynamic pleomorphism of this specialized apical apparatus which appears to drive hyphal tip growth in the higher fungi.Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

3.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

4.
Video-enhanced light microscopy of the apical and subapical regions of growing hyphae of several fungal species revealed the existence of momentary synchronized motions of subcellular organelles. First discovered in a temperature-sensitive morphological mutant (ramosa-1) of Aspergillus niger, these seemingly spontaneous cytoplasmic contractions were also detected in wild-type hyphae of A. niger, Neurospora crassa, and Trichoderma atroviride. Cytoplasmic contractions in all fungi lasted about 1 s. Although the cytoplasm recovered its motility and appearance, the contraction usually led to drastic changes in Spitzenkörper (apical body) behavior and hyphal morphology, often both. Within 10 s after the contraction, the Spitzenkörper commonly became dislodged from its polar position; sometimes it disassembled into phase-dark and phase-light components; more commonly, it disappeared completely. Whether partial or complete, the dislocation of the Spitzenkörper was always accompanied by a sharp reduction or cessation of growth, and was usually followed by marked morphological changes that included bulbous hyphal tips, bulges in the hyphal profile, and formation of subapical and apical branches. The cytoplasmic contractions are vivid evidence that the most conspicuous cell organelles (membrane-bound) in living hyphae are interconnected via a contractile cytoskeletal network.  相似文献   

5.
Summary. It is well established that cytoplasmic microtubules are depolymerized during nuclear division and reassembled as mitotic microtubules. Mounting evidence showing that cytoplasmic microtubules were also involved in apical growth of fungal hyphae posed the question of whether apical growth became disrupted during nuclear division. We conducted simultaneous observations of mitosis (fluorescence microscopy) and apical growth (phase-contrast microscopy) in single hyphae of Aspergillus nidulans to determine if the key parameters of apical growth (elongation rate and Spitzenkörper behavior) were affected during mitosis. To visualize nuclei during mitosis, we used a strain of A. nidulans, SRS27, in which nuclei are labeled with the green-fluorescent protein. To reveal the Spitzenkörper and measure growth with utmost precision, we used computer-enhanced videomicroscopy. Our analysis showed that there is no disruption of apical growth during mitosis. There was no decrease in the rate of hyphal elongation or any alteration in Spitzenkörper presence before, during, or after mitosis. Our findings suggest that apical growth and mitosis do not compete for internal cellular resources. Presumably, the population of cytoplasmic microtubules involved in apical growth operates independently of that involved in mitosis.Present address: Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.  相似文献   

6.
Dijksterhuis J 《Protoplasma》2003,222(1-2):53-59
Summary. The membrane-selective fluorescent dye FM4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridium dibromide, was used to stain the apical vesicle cluster within the specialized Spitzenkörper of the germ tube of the rust fungi Uromyces vignae and Puccinia graminis f. sp. tritici grown on glass surfaces. The Spitzenkörper stained within 15 min following addition of the dye. Optical sectioning by confocal microscopy of stained hyphal tips showed that the Spitzenkörper was asymmetrically positioned close to the cell–substratum interface during germ tube growth. The Spitzenkörper showed variations in shape and positioning over short (5 s) time intervals. The movement to a new location in the hyphal dome was followed by new growth in that region, consistent with the view that the Spitzenkörper supplies secretory vesicles for germ tube growth. A pronounced Spitzenkörper disappeared at the onset of appressorium differentiation during swelling of the germ tube. However, a stained structure, similar in appearance to a Spitzenkörper, was again observed during the formation of the highly polarized penetration peg.Correspondence and reprints: Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.Received October 25, 2002; accepted February 26, 2003; published online August 26, 2003  相似文献   

7.
Growth and organelle morphology in the wood rotting basidiomycete fungus Phanerochaete velutina were examined in Petri dishes, on agar-coated slides, and in submerged cultures, using DIC, fluorescence and four-dimensional (4-D; x,y,z,t) confocal microscopy, with several fluorescent probes. Phanerochaete is ideal for this work because of its fast growth, robustness, and use in a wide range of other studies. The probe carboxy-DFFDA, widely used for labelling vacuoles, has no effect either on hyphal tip extension or colony growth at the concentrations usually applied in labelling experiments. Carboxy-DFFDA labels the vacuoles and these form a tubular reticulum in hyphal tip cells. The probe also labels extremely small vesicles (punctate fluorescence) in the apex of tip cells, the Spitzenkörper, and short tubules that undergo sequences of characteristic movements and transformations to produce various morphologies, including ring-like structures. Their location and behaviour suggest that they are a distinct group of structures, possibly a subset of vacuoles, but as yet to be fully identified. Regular incursions of tubules extending from these structures and from the vacuolar reticulum into the apical dome indicate the potential for delivery of material to the apex via tubules as well as vesicles. Such structures are potential candidates for delivering chitin synthases to the apex. Spitzenkörper behaviour has been followed as hyphal tips with linear growth encounter obstacle hyphae and, as the hydrolysis product of carboxy-DFFDA only accumulates in membrane-enclosed compartments, it can be inferred that the labelled structures represent the Spitzenkörper vesicle cloud. Mitochondria also form a reticular continuum of branched tubules in growing hyphal tips, and dual localisation with DiOC6(3) and CMAC allows this to be distinguished from the vacuolar reticulum. Like vacuolar tubules, mitochondrial tubules also span the septa, indicating that they may also be a conduit for intercellular transport.  相似文献   

8.
Summary The hyphal tip ofSclerotium rolfsii was examined after fixation by freeze substitution. The Spitzenkörper consisted of a dense mass of apical vesicles and microvesicles surrounding a vesicle-free zone. Linear arrangements of microvesicles were occasionally observed within the Spitzenkörper. Abundant microfilaments were seen within the Spitzenkörper region, often in close association with apical vesicles and microvesicles. Microtubules passed through the Spitzenkörper and terminated at the plasmalemma at the extreme hyphal apex. Filasomes were mostly observed within the apical region and were in close proximity to the plasmalemma. Rough ER, mitochondria, microtubules, and vacuoles were abundant in the subapical region and were usually oriented parallel to the long axis of the hypha. Ribosomes were aligned on the outer surfaces of mitochondria. Golgi body equivalents were observed throughout the subapical region and appeared as inflated cisternae of varying shapes and electron opacities. Relationships to other basidiomycetous hyphal tip cells are discussed.Abbreviations AV apical vesicle - C Celsius - diam diameter - f filasome - G Golgi body equivalent - h hour - nm nanometer - M mitochondria - ME membranous elements; min minute - MV microvesicle - MVB multivesicular body - N nucleus - OsO4 osmium tetroxide - R ribosome - ER endoplasmic reticulum - S Spitzenkörper - Va vacuole - m micrometer  相似文献   

9.
The intracellular origins of polarity and branch initiation in fungi centre upon a localization in the supply of fungal wall constituents to specific regions on the hyphal wall. Polarity is achieved and maintained by accumulating secretory vesicles, prior to incorporation into the wall, in the form of an apical body or Spitzenkörper. However, neither the mechanisms leading to this accumulation nor the initiation of branching, are as yet understood. We propose a mechanism, based on experimental evidence, which considers the mechanical properties of the cytoskeleton in order to explain these phenomena. Cytoskeletal viscoelastic forces are hypothesized to be responsible for biasing vesicles in their motion, and a mathematical model is derived to take these considerations into account. We find that, as a natural consequence of the assumed interactions between vesicles and cytoskeleton, wall vesicles aggregate in a localized region close to the tip apex. These results are used to interpret the origin of the Spitzenkörper. The model also shows that an aggregation peak can collapse and give rise to two new centres of aggregation coexisting near the tip. We interpret this as a mechanism for apical branching, in agreement with published observations. We also investigate the consequences and presumptive role of vesicle–cytoskeleton interactions in the migration of satellite Spitzenkörper. The results of this work strongly suggest that the formation of the Spitzenkörper and the series of dynamical events leading to hyphal branching arise as a consequence of the bias in vesicle motion resulting from interactions with the cytoskeleton.  相似文献   

10.
Summary The tubulin cytoskeleton in hyphal tip cells ofAllomyces macrogynus was detected with an -tubulin monoclonal antibody and analyzed with microscopic and immunoblot techniques. The -tubulin antibody identified a 52 kilodalton polypeptide band on immunoblots. Immunfluorescence data were collected from formaldehyde-and cryofixed hyphae. Both methods provided similar images of tubulin localization. However, cryofixation yielded more consistent labeling and did not require detergent extraction or cell-wall lytic treatments. Tubulin was primarily localized as microtubules observed in the peripheral and central cytoplasmic regions and in mitotic spindles. Cytoplasmic microtubules were oriented parallel to the cells' longitudinal axis, with central microtubules more often varied in their alignment, and emanated from a region in the hyphal apex resulting in an apical zone of bright fluorescence. A thin layer of microtubules appearing as bands of fluorescence encircled many nuclei. Discrete spots of fluorescence were also associated with nuclei. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins that may be involved in the regulation of microtubule nucleation, stained centrosomes but not apical regions of hyphae. Nocodazole was used to depolymerize the microtubule network and reveal its regions of origin. A hocodazole concentration of 0.01 g/ ml (3.3× 10–8M) provided a 70 to 75% inhibition of hyphal tip growth and was used throughout this study. The number of cells having an apical zone of fluorescence declined by 15 min of exposure. This zone was present in only a few cells after 60 min. After 30 min, the central cytoplasm consisted of small microtubule fragments and nuclear-associated spots. A small number of peripheral microtubules and nuclear-associated spots persisted throughout nocodazole treatments. Spindle microtubules were restored by 30 min after removal of nocodazole. This was followed by the reappearance of the apical zone of fluorescence and then by central and peripheral cytoplasmic microtubules. Apical fluorescence coincided with the presence of a Spitzenkörper. The results suggest that the Spitzenkörper and centrosome function as centers of microtubule nucleation and organization during hyphal tip growth in this fungus.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - IB incubation buffer - LN2 liquid nitrogen - LSCM laser scanning confocal microscopy - MTOCs microtubule-organizing centers - PBS phosphate buffered saline - PIPES 1,4-piperazinedietha-nesulfonic acid - PFB PIPES fixation buffer - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - SPB spindle pole body - TEM transmission electron microscopy - YpSs yeast extract-inorganic phosphate-soluble starch  相似文献   

11.
F. M. Harold 《Protoplasma》1997,197(3-4):137-147
Summary Apical growth of fungal hyphae represents a relatively simple instance of cellular morphogenesis. Thanks to the polarized transport and exocytosis of precursor vesicles, new cell wall and plasma membrane are continuously deposited at the hyphal apex; the question is how the characteristic shape of tube and tapered tip comes about. Recent experiments lend support to a model whose central feature is a mobile vesicle supply center corresponding to the Spitzenkörper (apical body) visible in growing hyphae. Shapes predicted by the model agree remarkably well with those of actual hyphae. Nevertheless, critical examination of the model's premises suggests that it requires extension so as to incorporate both a driving force for expansion and a gradient of cell wall plasticity. I propose that a mobile vesicle supply center may be one, but only one, of a range of physiological devices employed by tip-growing organisms to localize the exocytosis of precursor vesicles. Apical growth should ensue whenever the loci of exocytosis advance vectorially, and nascent cell wall expands in a graded manner.Abbrevations VSC vesicle supply center - SPK Spitzenkörper  相似文献   

12.
Summary The hyphal tip ultrastructure ofAspergillus nidulans andAspergillus giganteus indicates that their apical organization is very similar to that found in other filamentous fungi. Both species have an area immediately behind the hyphal apex free of all large organelles and containing a high concentration of vesicles. InA. giganteus only one size class of vesicle is clearly evident, with a mean diameter of 72 nm. InA. nidulans two size classes of vesicle were found, with mean diameters of 75 nm and 31 nm. A Spitzenkörper is evident inA. nidulans as an area very close to the tip containing only the smaller vesicles. InA. giganteus one or more apparently mature Woronin bodies were found within the first 1 m of some hyphal apices. The possible significance of their presence is discussed.  相似文献   

13.
We examined in fine detail growth kinetics and intracellular events during lateral and apical branching in hyphae of Neurospora crassa. By high-resolution video-enhanced light microscopy, we found remarkable differences in the events preceding lateral vs apical branching. While apical branching involved a significant disturbance in the apical growth of the parental hypha, lateral branching occurred without any detectable alterations in the growth of the parental hypha. Prior to the emergence of a lateral branch, an incipient Spitzenk?rper was formed about 12-29 microm behind the apex. Lateral branch formation did not interfere with the elongation rate of the primary hypha, the shape of its apex or the behavior of its Spitzenk?rper. In sharp contrast, apical branching was preceded by marked changes in physiology and morphology of the parental hypha and by a sharp drop in elongation rate. The sequence involved a cytoplasmic contraction, followed by a retraction, dislocation, and disappearance of the Spitzenk?rper; hyphal elongation decreased sharply and a transient phase of isotropic growth caused the hyphal apex to round up. Growth resumed with the formation of two or more apical branches, each one with a Spitzenk?rper formed by gradual condensation of phase-dark material (vesicles) around an invisible nucleation site. The observed dissimilarities between lateral and apical branching suggest that these morphogenetic pathways are triggered differently. Whereas apical branching may be traced to a sudden discrete disruption in cytoplasmic organization (cytoplasmic contraction), the trigger of lateral branching probably stems from the subapical accumulation of wall precursors (presumably vesicles) reaching a critical concentration.  相似文献   

14.
Braun M  Hauslage J  Czogalla A  Limbach C 《Planta》2004,219(3):379-388
Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.Abbreviations ADF Actin-depolymerizing factor - CD Cytochalasin D - MF Microfilament  相似文献   

15.
Summary A monoclonal antibody was used to localize -tubulin in hyphal tip cells of the chytridiomycete fungusAllomyces macrogynus, and its distribution determined with standard epifluorescence and laser scanning confocal microscopy. The results demonstrate that -tubulin is a component of the Spitzenkörper and centrosomes. Immunoblot analysis of total soluble protein extracts separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis identified a single 56 kDa -tubulin-related polypeptide. Localization of -tubulin to the Spitzenkörper ofA. macrogynus provides evidence that the Spitzenkörper in this fungus functions as a microtubule-organizing center.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DIC differential interference contrast - LSCM laser scanning confocal microscopy - MTOCs microtubule-organizing centers - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPB spindle pole body - YpSs yeast extract-inorganic phosphate-soluble starch  相似文献   

16.
The Spitzenkörper is a dynamic structure present at the tips of hyphal cells with a single highly polarized growth site. It is closely connected with cell morphogenesis and polar growth, and is only present at actively growing sites. Morphogenesis of such highly polarized cells is complex, and requires the coordinated action of multiple protein complexes. We discuss the relevance of these complexes for the structure and function of the Spitzenkörper.  相似文献   

17.
Summary GerminatingCochliobolus sativus spores were induced to form appressoria on a variety of artificial surfaces, including replicas of the barley leaf surface. Evidence was obtained for the involvement of chemical and topographic signals during induction of appressorium formation inC. sativus. Germ tube thigmotropism was also observed in vitro. Ultrastructure relevant to appressorium formation was observed, including the germ tube apex, apical swelling of the germ tube apex prior to appressorium formation, the appressorium with associated septation and the penetration peg. Cytochemical probes applied to germlings at the electron microscope level failed to detect -D-mannan, -D-glucan, -D-galactan, D-glcNAc or D-galNAc polymers in the extracellular mucilage associated with the fungal germlings. The ultrastructure of hyphal apices from germlings grown under different nutritional conditions differed with respect to Spitzenkörper morphology, apex shape and in the quantity of associated extracellular mucilage. Experimental findings are discussed relative to current understanding of appressorium induction in more extensively studied systems.Abbreviations PDA potato dextrose agar - DS dilute salts - Con A concanavalin A - RcA120 Ricinus communis agglutinin120 - WGA wheat germ agglutinin - HpA Helix pomatia agglutinin - DIC differential interference contrast - UV ultraviolet - TEM transmission electron microscopy - NNF National Nanofabrication Facility  相似文献   

18.
Hyphal tips of fungi representing Oömycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes were examined by light and electron microscopy and compared with respect to their protoplasmic organization. In all fungi studied, there is a zone at the hyphal apex which is rich in cytoplasmic vesicles but nearly devoid of other cell components. Some vesicle profiles are continuous with the plasma membrane at the apices of these tip-growing cells. The subapical zones of hyphae contain an endomembrane system which includes smooth-surfaced cisternae associated with small clusters of vesicles. The findings are consistent with the hypothesis that vesicles produced by the endomembrane system in the subapical region become concentrated in the apex where they are incorporated at the expanding surface. Septate fungi (Ascomycetes, Basidiomycetes, and Deuteromycetes) have an apical body (Spitzenkörper) which is associated with growing hyphal tips. In electron micrographs of these fungi, an additional specialized region within the accumulation of apical vesicles is shown for the first time. This region corresponds on the bases of distribution among fungi, location in hyphae, size, shape and boundary characteristics to the Spitzenkörper seen by light microscopy. This structure is not universally associated with tip growth, whereas apical vesicles are widespread among tip-growing systems.  相似文献   

19.
T. M. Bourett  R. J. Howard 《Protoplasma》1991,163(2-3):199-202
Summary We have successfully localized fungal actin for the first time using immuno-electron microscopy and hyphal tips of the rice blast pathogenMagnaporthe grisea. Following ultrarapid freezing, samples were processed in a novel substitution fluid of 10% acrolein in anhydrous ethanol and embedded in LR White resin. A monoclonal anti-actin antibody, previously shown to recognizeM. grisea actin, bound specifically to filasomes concentrated in the peripheral cytoplasm of subapical regions, and to the core-region of the Spitzenkörper.Abbreviations IEM immuno-electron microscopy - TEM transmission electron microscopy  相似文献   

20.
A gene (NhKIN1) encoding a kinesin was cloned from Nectria haematococca genomic DNA by polymerase chain reaction amplification, using primers corresponding to conserved regions of known kinesin-encoding genes. Sequence analysis showed that NhKIN1 belongs to the subfamily of conventional kinesins and is distinct from any of the currently designated kinesin-related protein subfamilies. Deletion of NhKIN1 by transformation-mediated homologous recombination caused several dramatic phenotypes: a 50% reduction in colony growth rate, helical or wavy hyphae with reduced diameter, and subcellular abnormalities including withdrawal of mitochondria from the growing hyphal apex and reduction in the size of the Spitzenkörper, an apical aggregate of secretory vesicles. The effects on mitochondria and Spitzenkörper were not due to altered microtubule distribution, as microtubules were abundant throughout the length of hyphal tip cells of the mutant. The rate of spindle elongation during anaphase B of mitosis was reduced 11%, but the rate was not significantly different from that of wild type. This lack of a substantial mitotic phenotype is consistent with the primary role of the conventional kinesins in organelle motility rather than mitosis. Our results provide further evidence that the microtubule-based motility mechanism has a direct role in apical transport of secretory vesicles and the first evidence for its role in apical transport of mitochondria in a filamentous fungus. They also include a unique demonstration that a microtubule-based motor protein is essential for normal positioning of the Spitzenkörper, thus providing a new insight into the cellular basis for the aberrant hyphal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号