首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuolar uptake of ornithine and lysine was characterized inNeurospora crassausing a cupric ion permeabilization system. Michaelis constants were measured as 1.4 mM for lysine and 11.0 mM for ornithine, and maximal velocities were determined. Vacuolar lysine uptake was shown to be inhibited competitively byl-arginine and histidine while ornithine uptake was inhibited by a variety of amino acids. Strains defective in the vacuolar ornithine permease were isolated using a filtration enrichment method. Two isolates—RSC-39 and RSC-63—had a reduced ability to accumulate ornithine. Vacuolar uptake of amino acids was measured using cupric ion-permeabilized mycelia; both strains had reduced ornithine uptake while lysine uptake and arginine uptake were normal. For both isolates, both the Michaelis constant and the maximal velocity for ornithine uptake were reduced compared to those of wild type. These results suggest that both strains are defective in the gene which encodes the vacuolar ornithine permease.  相似文献   

2.
Intracellular distributions of K+, Mg2+ and orthophosphate under various conditions of cultivation or incubation of the yeast Saccharomyces carlsbergensis were studied by differential extraction of ion pools. The decisive role of vacuolar compartmentation of ions in regulation of K+, Mg2+ and orthophosphate levels in the yeast cytoplasm was shown. The content of intracellular K+ and Mg2+ in yeast increased or decreased primarily depending on the increase or decrease in the vacuolar ion pool. The levels of K+ and Mg2+ in the cytoplasm were practically unchanged. Vacuoles were involved in regulation of Mn2+ concentration in the cytoplasm of the yeast S. carlsbergensis accumulating this ion in the presence of glucose. Alongside the vacuolar compartmentation, the chemical compartmentation, i. e. formation of bound Mg2+, Mn2+ and K+ was, evidently, also involved in the control of ion levels in the cytoplasm. The orthophosphate level in the yeast cytoplasm was regulated by its accumulation in vacuoles and biosynthesis of inorganic polyphosphates in these organelles. The biosynthesis of low-molecular weight polyphosphates occurred parallel to the accumulation of Mg2+ or Mn2+ in vacuoles, thus confirming the availability of the other mechanism for the transport of these ions through the tonoplast differing from the transport mechanism through the plasmalemma.  相似文献   

3.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

4.
The filamentous fungus Neurospora crassa contains many smallvacuoles. These organelles contain high concentrations of polyphosphates andbasic amino acids, such as arginine and ornithine. Because of their size anddensity, the vacuoles can be separated from other organelles in the cell. TheATP-driven proton pump in the vacuolar membrane is a typical V-type ATPase.We examined the size and structure of this enzyme using radiationinactivation and electron microscopy. The vacuolar ATPase is a large andcomplex enzyme, which appears to contain at least thirteen different types ofsubunits. We have characterized the genes that encode eleven of thesesubunits. In this review, we discuss the possible function and structure ofthese subunits.  相似文献   

5.
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.  相似文献   

6.
The plasma membrane of Candida utilis cells was rapidly disrupted by a small dose of DEAE-dextran. The vacuolar membranes, in contrast, remained intact under isotonic conditions. Therefore, the cytosolic pool could be extracted in a first step, and in a second step, after disruption of the vacuoles, the vacuolar pool. The two extracts were studied in cells grown on different nitrogen sources, namely ammonium, arginine, ornithine, citrulline, glycine, and proline.The amount of soluble amino acids in Candida cells varies considerably depending on the nitrogen source. This is largely caused by the variation in size of the vacuolar pool (0.8–2.4 mmol per g protein) containing nearly all nitrogen-rich amino acids such as arginine and ornithine, whereas the size of the cytoplasmic pool, holding most of the glutamic acid, is fairly constant (1.3 mmol per g protein). Upon nitrogen starvation the vacuolar pool was reduced much more than the cytosolic pool. A storage and buffer function of the vacuolar pool was also indicated by the much slower turnover of the vacuolar than of the cytosolic glutamine in an isotope labelling experiment. Potassium, sodium, orthophosphate, ATP, and other substances absorbing at 260 nm were found predominantly in the cytosolic extracts. Extraction of uniformly 14C-labelled cells showed that the total soluble pool of the cells contained about 10% of the total carbon. Of this about 45% was in the vacuolar the rest in the cytosolic extract. The labelled extracts were further characterized by ion exchange chromatography.Non-Standard Abbreviations DEAE-dextran diethylaminoethyl-dextran - MES 2-(N-morpholino)ethane sulfonic acid - PIPES piperazine-N,N-bis-2-ethane sulfonic acid - c-extract cytosolic extract - v-extract vacuolar extract  相似文献   

7.
The compartmentation of solutes in suspension cells of Saccharum sp. during different growth phases in batch culture was determined using CuCl2 to permeabilize the plasma membrane of the cells. The efflux of cytosolic and vacuolar pools of sugars, cations and phosphate was monitored, and the efflux data for phosphate were compared and corrected using data from compartmentation analysis of phosphate as determined by 31P-nuclear magnetic resonance spectroscopy. The results show that sucrose is not accumulated in the vacuoles at any phase of the growth cycle. On the other hand, glucose and fructose are usually accumulated in the vacuole, except at the end of the cell-culture cycle when equal distribution of glucose and fructose between the cytosol and the vacuole is found. Both Na+ and Mg2+ are preferentially located in the vacuoles, but follow the same tendency as glucose and fructose with almost complete location in the vacuole in the early culture phases and increasing cytosolic concentration with increasing age of the cell culture. Potassium ions are always clearly accumulated in the cytosol at a concentration of about 80 mM; only about 20% of the cellular K+ is located inside the vacuole. Cytosolic phosphate is little changed during the cell cycle, whereas the vacuolar phosphate pool changes according to total cellular phosphate. In general there are two different modes of solute compartmentation in sugarcane cells. Some solutes, fructose, glucose, Mg2+ and Na+, show high vacuolar compartmentation when the total cellular content of the respective solute is low, whereas in the case of ample supply the cytosolic pools increase. For other solutes, phosphate and K+, the cytosolic concentration tends to be kept constant, and only excess solute is stored in the vacuole and remobilized under starvation conditions. The behaviour of sucrose is somewhat intermediate and it appears to equilibrate easily between cytosol and vacuole.Abbreviation NMR nuclear magnetic resonance The very cooperative help by Dr. J. Reiner with the 31P-NMR measurements and the technical assistance by D. Keis are gratefully acknowledged. This research was supported by the Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie.  相似文献   

8.
The vacuoles of Neurospora crassa, grown in minimal medium, contain a 1:1 ratio of basic amino acids and phosphate, the latter in the form of long-chain, inorganic polyphosphate-P. Vacuoles isolated from cells depleted of polyphosphate retain basic amino acids despite the absence of over 90% of their polyphosphate. Thus, vacuolar retention of basic amino acids is not dependent upon binding to or charge neutralization by polyphosphate. Polyphosphate was found to be the only macromolecular polyanion in vacuoles of normal or phosphate-depleted cells. Gel filtration experiments revealed that about half the polyphosphate of normal vacuoles is bound strongly by vacuolar spermidine, Mg2+, and Ca2+. The polyphosphate thus occupied was not available for basic amino acid binding. We have identified about 90% of the cations of isolated vacuoles; in addition to spermidine, Mg2+, and Ca2+, the cation pool consists mainly of arginine, ornithine, histidine, lysine, and Na+, with a small amount of K+. Isolated vacuoles appear to be almost wholly impermeable to all these ions, and in vivo, vacuoles appear to be highly selective in ion uptake by an active process. The interaction of basic amino acid with the available polyphosphate was found to reduce the chemical activity of the former. In keeping with this effect, cells with abnormally high basic amino acid-polyphosphate ratios displayed greatly swollen vacuoles, indicating considerable osmotic activity of the basic amino acids and their counterions under these conditions.  相似文献   

9.
Vacuoles isolated from storage root tissue of red beet (Beta vulgaris L.) do not leak significant quantities of betanin, sucrose, Na+ or K+ during isolation. This indicates that analysis of vacuoles in vitro gives meanigful information about the compartmentation of solutes in vivo. Preparations of vacouoles were used to determine the distribution of glycinebetaine and proline between vacuole and cytoplasm in beet cells. Both compounds were detected in preparations of isolated beet vacuoles. In the case of glycinebetaine it was shown that this solute was associated with the vacuoles, not with the small number of other organelles which contaminated the preparations. The vacuolar pool accounted for 26 to 84% of the total tissue glycinebetaine and 17 to 57% of the proline. Concentrations of these compounds in vacuole and cytoplasm were calculated and were always higher in the cytoplasm than in the vacuole. The concentration gradient across the tonoplast varied considerably. The significance of these results is discussed in relation to the hypothesis that glycinebetaine and proline function as benign cytoplasmic osmotica.Abbreviations A537 absorbance at 537 nm - MES 2-(N-morpholino)-ethanesulphonic acid - Na2EDTA ethylenediaminetetraacetic acid, disodium salt - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl)methylamine  相似文献   

10.
A highly selective alkaloid uptake system in vacuoles of higher plants   总被引:6,自引:0,他引:6  
B. Deus-Neumann  M. H. Zenk 《Planta》1984,162(3):250-260
Vacuoles were isolated from different plant cell cultures and the transport mechanism for alkaloid uptake at the tonoplast membrane, as well as the compartmentation of enzymes and products inside the cells were investigated. While serpentine, the major alkaloid of Catharanthus roseus cells, is definitely located inside the vacuole, two key enzymes of the indole-alkaloid pathway, strictosidine synthase and a specific glucosidase, are located in the cytosol. Transport of alkaloids across the tonoplast into the vacuolar space has been characterized as an active, engergy-requiring mechanism, which is sensitive to the temperature and pH of the surrounding medium, stimulated by K+ and Mg2+, and inhibited by N,N-dicyclohexylcarbodiimid and Cu2+. The alkaloids accumulate inside the vacuoles against a concentration gradient, and the uptake system is specific for alkaloids indigenous to the plant from which the vacuoles have been isolated.Abbreviation DCCD N,N-dicyclohexylcarbodiimid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

11.
Duan XG  Yang AF  Gao F  Zhang SL  Zhang JR 《Protoplasma》2007,232(1-2):87-95
Summary. The vacuolar H+-translocating inorganic pyrophosphatase (H+-PPase) uses pyrophosphate as substrate to generate the proton electrochemical gradient across the vacuolar membrane to acidify vacuoles in plant cells. The heterologous expression of H+-PPase genes (TsVP from Thellungiella halophila and AVP1 from Arabidopsis thaliana) improved the salt tolerance of tobacco plants. Under salt stress, the transgenic seedlings showed much better growth and greater fresh weight than wild-type plants, and their protoplasts had a normal appearance and greater vigor. The cytoplasmic and vacuolar pH in transgenic and wild-type cells were measured with a pH-sensitive fluorescence indicator. The results showed that heterologous expression of H+-PPase produced an enhanced proton electrochemical gradient across the vacuolar membrane, which accelerated the sequestration of sodium ions into the vacuole. More Na+ accumulated in the vacuoles of transgenic cells under salt (NaCl) stress, revealed by staining with the fluorescent indicator Sodium Green. It was concluded that the tonoplast-resident H+-PPase plays important roles in the maintenance of the proton gradient across the vacuolar membrane and the compartmentation of Na+ within vacuoles, and heterologous expression of this protein enhanced the electrochemical gradient across the vacuolar membrane, thereby improving the salt tolerance of tobacco cells. Correspondence: J.-R. Zhang, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, People’s Republic of China 250100.  相似文献   

12.
Quantitative ion localization within Suaeda maritima leaf mesophyll cells   总被引:2,自引:0,他引:2  
Grown under saline conditions, Suaeda maritima accumulates Na+ and Cl- into its leaves, where individual mesophyll cells behave differently in their compartmentation of these ions. Measurements of ion concentrations within selected subcellular compartments show that freeze-substitution with dry sectioning is a valuable preparative technique for analytical electron microscopy of highly vacuolate plant material. Using this approach, absolute estimates were made of Na+, K+ and Cl- concentrations in the cytoplasm, cell walls, chloroplasts and vacuoles of leaf mesophyll cells.Abbreviation TAEM transmission analytical electron microscopy  相似文献   

13.
NHX‐type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na+ in vacuoles. However, all isoforms characterized so far catalyze both Na+/H+ and K+/H+ exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K+, which in turn affects plant K+ nutrition and Na+ tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K+ vacuolar pools in all growth conditions tested, but no consistent enhancement of Na+ accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K+ and to withstand salt‐shock. Under K+‐limiting conditions, greater K+ compartmentation in the vacuole occurred at the expense of the cytosolic K+ pool, which was lower in transgenic plants. This caused the early activation of the high‐affinity K+ uptake system, enhanced K+ uptake by roots, and increased the K+ content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H+‐linked K+ transport that is thought to facilitate active K+ uptake at the tonoplast, and the partitioning of K+ between vacuole and cytosol.  相似文献   

14.
The ruminal bacterium Synergistes jonesii strain 78-1, which is able to degrade the pyridinediol toxin in the plant Leucaena leucephala, was studied for its ability to utilise amino acids. The organism used arginine, histidine and glycine from a complex mixture of amino acids, and both arginine and histidine supported growth in a semi-defined medium. The products of (U-14C)-arginine metabolism were CO2 acetate, butyrate, citrulline and ornithine. The labelling pattern of end products from (U-14C)-histidine metabolism differed in that carbon also flowed into formate and propionate. Arginine was catabolised by the arginine deiminase pathway which was characterised by the presence of arginine deiminase, ornithine transcarbamylase and carbamate kinase. This is the first report of a rumen bacterium that uses arginine and histidine as major energy yielding substrates.  相似文献   

15.
The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA3 was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.  相似文献   

16.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

17.
The transport of L-arginine was studied in isolated vacuoles of Saccharomyces cerevisiae. A centrifugation method allowed rapid separation of the fragile vacuoles from the incubation media so that initial uptake rates of [14C]arginine could be measured. Labelled arginine added to the medium was accumulated in the isolated vacuoles; it was found to exchange specifically with the arginine already present in the vacuoles. Such an exchange did not take place in intact spheroplasts. The pH dependence of the arginine transport in the vacuoles was tested. As the vacuoles are unstable in the pH range of optimal transport activity (pH above 7.0), the pH optimum of the transport reaction could not be determined. From the temperature dependence, the apparent energy of activation was calculated to be 9800 cal/mol. Arginine transport shows saturation kinetics with an apparent Km of 30 muM in the isolated vacuoles, and of 1.5 muM in the spheroplasts. Competition experiments with amino acids and arginine analogues demonstrated that the arginine transport in both vacuoles and spheroplasts, is highly specific. The two systems, however, were shown to have distinct specificities. The inhibition of vacuolar L-arginine transport by D-arginine, L-histidine, and L-canavanine was competitive with apparent Ki values of 60 muM, 400 muM and 600 muM respectively.  相似文献   

18.
At least 78%, and perhaps all, of inorganic polyphosphate is shown to be contained within the vesicles (vacuoles) of Neurospora crassa, where over 97% of the soluble arginine, lysine, and ornithine pools are known to accumulate. Furthermore, synthetic polyphosphate can concentrate arginine up to 400-fold from dilute (0.01 mM) solutions in equilibrium dialysis. For these reasons and because the molar ratio of basic amino acids and polyphosphate phosphorus is approximately 1, we tested the hypothesis that there was an obligate physiological relationship between them. Experiments in which nitrogen starvation and arginine excess were imposed upon cells showed that polyphosphate content was insensitive to changes in the basic amino acid content. Experiments involving phosphate starvation and restoration showed that basic amino acid content was almost wholly independent of polyphosphate pools. Moreover, the normal high degree of compartmentation of arginine in vesicles was maintained despite polyphosphate depletion, and arginine was still exchanged across the vesicular membrane. We conclude that N. crassa, like yeasts, can regulate polyphosphates and basic amino acids independently, and that the accumulation of basic amino acids in vesicles may depend upon an energy-requiring mechanism in addition to the demonstrated charge interaction with polyphosphate.  相似文献   

19.
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed. Miwa Ohnishi and Tetsuro Mimura contributed equally to this work.  相似文献   

20.
Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号