首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Infante  S. Lo    J. L. Hall 《Genetics》1995,141(1):87-93
We have constructed and characterized a Chlamydomonas reinhardtii total genomic library in yeast artificial chromosomes (YACs). The library contains 7500 clones with inserts ranging in size from 100-200 kb. The representation of the library was assessed by screening one-third of it with a probe derived from the dispersed repeat, Gulliver, which occurs ~13 times in the genome. At least 10 of these Gulliver loci were isolated within 15 independent YACs. Two of these YACs encompass the Gulliver element designated G, which was reported to map to the uni linkage group (ULG). The end clones of these two YACs have been genetically mapped by RFLP analysis in an interspecific cross and thereby shown to be closely linked to the APM locus on the ULG. A third uni-specific YAC has also been isolated and its ends have been mapped by RFLP analysis. Genetic and RFLP analysis of these and other YACs indicates that the frequency of chimeric YACs in the library is very low. The library was constructed in a second generation vector that enables plasmid rescue of YAC end clones as well as copy number amplification of artificial chromosomes. We provide evidence that amplification of intact YACs requires a rad1:rad52 yeast strain.  相似文献   

2.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

3.
Diaz-Perez, S. V., Crouch, V. W., and Orbach, M. J. 1996. Construction and characterization of aMagnaporthe griseabacterial artificial chromosome library.Fungal Genet. Biol.20,280–288. A bacterial artificial chromosome (BAC) library ofMagnaporthe griseacontaining 4128 clones with an average insert size of 66-kb has been constructed. This library represents seven genome equivalents ofM. griseaand has been demonstrated to be representative of the genome by screening for the presence of several single-copy genes and DNA markers. The utility of the library for use in map-based cloning projects was shown by the spanning of a nine-cosmid, 207-kb DNA contig with only 3 BAC clones. In addition, using alys1-3auxotroph, we have shown that BAC clones at least 113 kb can be transformed intoM. griseato screen for complementation of mutations. Thus, BACs isolated in chromosome walks can be rapidly screened for the presence of the sought after gene. The ease of construction of BAC libraries and of isolation and manipulation of BAC clones makes the BAC system an ideal one for physical analyses of fungal genomes.  相似文献   

4.
Increasing attention has been focused in recent years on the rat as a model organism for genetic studies, in particular for the investigation of complex traits, but progress has been limited by the lack of availability of large-insert genomic libraries. Here, we report the construction and characterization of an arrayed yeast artificial chromosome (YAC) library for the rat genome containing approximately 40,000 clones in the AB1380 host using the pCGS966 vector. An average size of 736 kb was estimated from 166 randomly chosen clones; thus the library provides 10-fold coverage of the genome, with a 99.99% probability of containing a unique sequence. Eight of 39 YACs analyzed by fluorescencein situhybridization were found to be chimeric, indicating a proportion of about 20–30% of chimeric clones. The library was spotted on high-density filters to allow the identification of YAC clones by hybridization and was pooled using a 3-dimensional scheme for screening by PCR. Among 48 probes used to screen the library, an average of 9.3 positive clones were found, consistent with the calculated 10-fold genomic coverage of the library. This YAC library represents the first large-insert genomic library for the rat. It will be made available to the research community at large as an important new resource for complex genome analysis in this species.  相似文献   

5.
We have constructed a YAC library containing over 5000 clones of tomato (Lycopersicon esculentum Mill. cv. VFNT) DNA with an average insert size of 320 kb, which were equivalent to two haploid genomes. The tomato used here has four disease resistance traits. Therefore the library constructed should be useful for isolating genes of such traits by map-based cloning.  相似文献   

6.
Diaz-Perez, S. V., Crouch, V. W., and Orbach, M. J. 1996. Construction and characterization of a Magnaporthe grisea bacterial artificial chromosome library. Fungal Genet. Biol. 20, 280-288. A bacterial artificial chromosome (BAC) library of Magnaporthe grisea containing 4128 clones with an average insert size of 66-kb has been constructed. This library represents seven genome equivalents of M. grisea and has been demonstrated to be representative of the genome by screening for the presence of several single-copy genes and DNA markers. The utility of the library for use in map-based cloning projects was shown by the spanning of a nine-cosmid, 207-kb DNA contig with only 3 BAC clones. In addition, using a lys1-3 auxotroph, we have shown that BAC clones at least 113 kb can be transformed into M. grisea to screen for complementation of mutations. Thus, BACs isolated in chromosome walks can be rapidly screened for the presence of the sought after gene. The ease of construction of BAC libraries and of isolation and manipulation of BAC clones makes the BAC system an ideal one for physical analyses of fungal genomes.  相似文献   

7.
以细菌人工染色体pECBAC1为载体,构建了野生一粒小麦(Triticum boeoticum B oiss)的基因组BAC文库.该文库共包含约17万个克隆,平均插入片段长度为104 kb,按野生一粒小麦基因组为5 600 Mb计算,文库覆盖了约3倍的该物种基因组.用大麦叶绿体psb A基因和玉米线粒体atp6基因作混合探针,检测发现该文库中含细胞器基因组同源序列的克隆数小于1% .该文库的建成,为小麦基因的克隆及基因组学研究提供了技术平台.  相似文献   

8.
野生一粒小麦BAC文库的构建和鉴定   总被引:4,自引:0,他引:4  
以细菌人工染色体pECBAC1为载体 ,构建了野生一粒小麦 (TriticumboeoticumBoiss)的基因组BAC文库。该文库共包含约 17万个克隆 ,平均插入片段长度为 10 4kb ,按野生一粒小麦基因组为 5 6 0 0Mb计算 ,文库覆盖了约 3倍的该物种基因组。用大麦叶绿体psbA基因和玉米线粒体atp6基因作混合探针 ,检测发现该文库中含细胞器基因组同源序列的克隆数小于 1%。该文库的建成 ,为小麦基因的克隆及基因组学研究提供了技术平台  相似文献   

9.
R. E. Palmer  E. Hogan    D. Koshland 《Genetics》1990,125(4):763-774
In the yeast, Saccharomyces cerevisiae, cell division cycle (CDC) genes have been identified whose products are required for the execution of different steps in the cell cycle. In this study, the fidelity of transmission of a 14-kb circular minichromosome and a 155-kb linear chromosome fragment was examined in cell divisions where specific CDC products were temporarily inactivated with either inhibitors, or temperature sensitive mutations in the appropriate CDC gene. All of the cdc mutants previously shown to induce loss of endogenous linear chromosomes also induced loss of a circular minichromosome and a large linear chromosome fragment in our study (either 1:0 or 2:0 loss events). Therefore, the efficient transmission of these artificial chromosomes depends upon the same trans factors that are required for the efficient transmission of endogenous chromosomes. In a subset of cdc mutants (cdc6, cdc7 and cdc16), the rate of minichromosome loss was significantly greater than the rate of loss of the linear chromosome fragment, suggesting that a structural feature of the minichromosome (nucleotide content, length or topology) makes the minichromosome hypersensitive to the level of function of these CDC gene products. In another subset of cdc mutants (cdc7 and cdc17), the relative rate of 1:0 events to 2:0 events differed for the minichromosome and chromosome fragment, suggesting that the type of chromosome loss event observed in these mutants was dependent upon chromosome structure. Finally, we show that 2:0 events for the minichromosome can occur by both a RAD52 dependent and RAD52 independent mechanism. These results are discussed in the context of the molecular functions of the CDC products.  相似文献   

10.
Expansion of trinucleotide repeat tracts has been shown to be associated with numerous human diseases. The mechanism and timing of the expansion events are poorly understood, however. We show that CTG repeats, associated with the human DMPK gene and implanted in two homologous yeast artificial chromosomes (YACs), are very unstable. The instability is 6 to 10 times more pronounced in meiosis than during mitotic division. The influence of meiosis on instability is 4.4 times greater when the second YAC with a repeat tract is not present. Most of the changes we observed in trinucleotide repeat tracts are large contractions of 21 to 50 repeats. The orientation of the insert with the repeats has no effect on the frequency and distribution of the contractions. In our experiments, expansions were found almost exclusively during gametogenesis. Genetic analysis of segregating markers among meiotic progeny excluded unequal crossover as the mechanism for instability. These unique patterns have novel implications for possible mechanisms of repeat instability.  相似文献   

11.
12.
分离染色体DNA上的目的片段,对其进行结构及功能的分析,对于发现新基因,研究基因功能都具有很大的意义。利用TAR克隆技术可以直接从基因组中分离所需的目的片段,这比传统的通过筛库获得目的片段的方法简便、快速、准确并且特异性强 。  相似文献   

13.
The small size of nuclei of the budding yeast Saccharomyces cerevisiae limits the utility of light microscopy for analysis of the subnuclear distribution of chromatin-bound proteins. Surface spreading of yeast nuclei results in expansion of chromatin without loss of bound proteins. A method for surface spreading balances fixation of DNA bound proteins with detergent treatment. The method demonstrated is slightly modified from that described by Josef Loidl and Franz Klein1,2. The method has been used to characterize the localization of many chromatin-bound proteins at various stages of the mitotic cell cycle, but is especially useful for the study of meiotic chromosome structures such as meiotic recombinosomes and the synaptonemal complex. We also describe a modification that does not require use of Lipsol, a proprietary detergent, which was called for in the original procedure, but no longer commercially available. An immunostaining protocol that is compatible with the chromosome spreading method is also described.  相似文献   

14.
15.
Healing of Broken Linear Dicentric Chromosomes in Yeast   总被引:23,自引:8,他引:23       下载免费PDF全文
In yeast, meiotic recombination between a linear chromosome III and a haploid-viable circular chromosome will yield a dicentric, tandemly duplicated chromosome. Spores containing apparently intact dicentric chromosomes were recovered from tetrads with three viable spores. The spore containing the dicentric inherited URA3 (part of the recombinant DNA used to join regions near the ends of the chromosome into a circle) as well as HML, HMR and MAL2 (located near the two ends of a linear but deleted from the circle). The Ura+ Mal+ colonies were highly variegated, giving rise to as many as seven distinctly different stable ("healed") derivatives, some of which were Ura+ Mal +, others Ura+ Mal- and others Ura - Mal+. The colonies were also sectored for five markers (HIS4, LEU2, CRY1, MAT and THR4) initially heterozygous in the tandemly duplicated dicentric chromosome.—Southern blot and genetic analyses have demonstrated that these stable derivatives arose from mitotic break-age of the dicentric chromosome, followed by one of several different healing events. The majority of the stable derivatives contained circular or linear chromosomes apparently resulting from homologous recombination between a broken chromosome end and a homologous region on the other end of the original dicentric duplicated chromosome. A smaller proportion of events resulted in apparently uniquely healed linear chromosomes in which the broken chromosome acquired a new telomere. In two instances we recovered chromosome III partially duplicated with a novel right end. We have also found one derivative that had also experienced rearrangement of repeated DNA sequences found adjacent to yeast telomeres.  相似文献   

16.
随着人类和植物基因组计划的实施,能容纳大片段的人工染色体载体发展迅速。而用YAC、BAC和PAC等基因组文库进行目的基因的筛选,在获得候选克隆后,通常要进行亚克隆,然后对每个亚克隆逐一进行基因功能互补试验,不仅工作量大,而且有遗漏目的基因的危险。TAC载体含P1质粒和Ri质粒的复制子,可直接转化植物,大大加速了工作进程。概括性的叙述了TAC载体的发展,TAC文库构建的程序及文库鉴定的问题。  相似文献   

17.
细菌人工染色体文库的构建及应用   总被引:1,自引:0,他引:1  
细菌人工染色体(BAC)是第二代大片段DNA的克隆载体系统,具有容量大、嵌合率低、遗传特性稳定、转化效率高、插入片段易回收、操作简便等优点,因而被广泛应用于基因组较大的真核生物基因组研究中,并发挥着前所未有的重要作用。本文综述了BAC的发展,利用此载体构建基因组文库的程序和鉴定方法,及其在物理图谱构建、图位克隆、基因组测序、转基因技术等研究中的应用。  相似文献   

18.
19.
The yeast Torulaspora delbrueckii, which propagates as a haploid, was made into a diploid by treatment with dimethyl sulfoxide (DMSO) on the regeneration of protoplasts. The diploid state was stably inherited; the cell volume was three times that of the parent strain and the cellular DNA content was two times that of the parental strain. No essential difference was found between diploids induced by DMSO and those formed through intraspecific protoplast fusion. The diploid strains sporulated fairly well, with their cells converting directly into asci. Random spore analysis revealed that diploids induced through protoplast fusion gave rise to auxotrophic segregants (haploids) with the parental genetic marker or to segregants formed by recombination, while diploids induced by DMSO from a doubly auxotrophic parent gave rise to no recombinant, indicating that it was chromosomally homoallelic in nature. The magnesium level in the protoplast regeneration medium was found to be an important factor for inducing diploid formation. At 0.2 mM magnesium diploids appeared even in the absence of DMSO, while at 2 mM magnesium diploids never appeared unless DMSO was added to the regeneration medium. Evidence is provided that the diploids induced by DMSO or a low magnesium level are due to direct diploidization but not protoplast fusion. UV light irradiation of intact cells (without protoplasts), 10% of which survived, also produced diploids among this surviving population. From these results we conclude that the perturbation of protoplast regeneration or of cell division by the treatments mentioned above somehow induced direct diploidization of T. delbrueckii.  相似文献   

20.
Homologous Recombination between Episomal Plasmids and Chromosomes in Yeast   总被引:1,自引:2,他引:1  
Falco SC  Rose M  Botstein D 《Genetics》1983,105(4):843-856
We have observed genetic recombination between ura3( -) mutations (among them extensive deletions) carried on "episomal" (i.e., 2micro DNA-containing) plasmids and other ura3( -) alleles present at the normal chromosomal URA3 locus. The recombination frequency found was comparable to the level observed for classical mitotic recombination but was relatively insensitive to sunlamp radiation, which strongly stimulates mitotic recombination. Three equally frequent classes could be distinguished among the recombinants. Two of these are the apparent result of gene conversions (or double crossovers) which leave the URA3(+) allele on the chromosome (class I) or on the plasmid (class II). The third class is apparently due to a single crossover that results in the integration of the plasmid into a chromosome. Plasmid-chromosome recombination can be useful in fine structure genetic mapping, since recombination between a chromosomal point mutation and a plasmid-borne deletion mutation only 25 base pairs distant was easily detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号