首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

2.
Various hormones, including sex steroids and neuropeptides, have been implicated in aggression. In this study we examined (1) sex differences in intrasexual aggression in na?ve prairie voles; (2) the effects of developmental manipulations of oxytocin on intrasexual aggression; and (3) changes in patterns of intrasexual aggression after brief exposure to an animal of the opposite sex. Within 24 h of birth, infants were randomly assigned to receive either an injection of oxytocin (OT) or oxytocin antagonist (OTA) or to one of two control (CTL) groups receiving either isotonic saline or handling without injection. As adults, animals were tested twice in a neutral arena; before (Test 1) and 24 h after (Test 2) a 4-h exposure to an animal of the opposite sex. In Test 1, CTL males were more likely to show aggressive and less likely to show social behavior than CTL females. No significant treatment differences were observed within either sex in Test 1. In Test 2, after brief exposure to a male, females treated with OT became more aggressive and less social than OTA or CTL females. Male aggressive behavior did not change after exposure to a female. An increase in aggression and decline in social behavior toward other females, seen here in OT-treated females, is typically observed only following several days of female-male cohabitation. These findings demonstrate a sex difference in intrasexual aggression and suggest that neonatal exposure to OT may facilitate the onset of the mate-guarding component of pair bonding in female prairie voles.  相似文献   

3.
Social relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles. We have also modeled the effects of family structure on the development of adult social and emotional behaviors. Here we assessed whether alcohol intake would differ in prairie voles reared by both parents compared to those reared by a single mother. We also assessed whether meadow voles, a closely related species that do not form lasting reproductive partnerships, would differ in alcohol drinking or in the effect of social influence on drinking. Prairie voles were reared either bi-parentally (BP) or by a single mother (SM). BP- and SM-reared adult prairie voles and BP-reared adult meadow voles were given limited access to a choice between alcohol (10%) and water over four days and assessed for drinking behavior in social and non-social drinking environments. While alcohol preference was not different between species, meadow voles drank significantly lower doses than prairie voles. Meadow voles also had significantly higher blood ethanol concentrations than prairie voles after receiving the same dose, suggesting differences in ethanol metabolism. Both species, regardless of rearing condition, consumed more alcohol in the social drinking condition than the non-social condition. Early life family structure did not significantly affect any measure. Greater drinking in the social condition indicates that alcohol intake is influenced similarly in both species by the presence of a peer. While the ability of prairie voles to model humans may be limited, the lack of differences in alcohol drinking in BP- and SM-reared prairie voles lends biological support to human studies demonstrating no effect of single-parenting on alcohol abuse.  相似文献   

4.
The socially monogamous mandarin vole (Microtus mandarinus) shows significant behavioral plasticity. We examined whether levels of sociability, parental care and central expression of estrogen receptor alpha differed between two populations with different ecologies. Our results show that males from the Chengcun population display significantly more amicable and less aggressive behaviors towards novel same-sex individuals compared to males from the second population of Xinzheng. Chengcun voles directed more licking behavior towards neonatal pups than did Xinzheng voles. Differences were also found in the number of estrogen receptor alpha-immunoreactive neurons. For example, Xinzheng males displayed significantly higher immunoreactivity than Chengcun males in the medial amygdala, medial preoptic area and ventromedial nucleus of the hypothalamus. Xinzheng females expressed higher levels of estrogen receptor alpha-immunoreactivity than Chengcun females in the medial preoptic area. Chengcun females exhibited significantly more estrogen receptor alpha expression than Xinzheng females in the bed nucleus of the stria terminalis. Our results indicate that mandarin voles from the Chengcun site possess monogamous traits, and animals from Xinzheng possess polygamous traits. It also appears that different social behavior and levels of parental care in these two populations may be associated with differences in estrogen receptor alpha-immunoreactive neurons.  相似文献   

5.
Disruptions in the social environment, such as social isolation, are distressing and can induce various behavioral and neural changes in the distressed animal. We conducted a series of experiments to test the hypothesis that long-term social isolation affects brain plasticity and alters behavior in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult female prairie voles were injected with a cell division marker, 5-bromo-2′-deoxyuridine (BrdU), and then same-sex pair-housed (control) or single-housed (isolation) for 6 weeks. Social isolation reduced cell proliferation, survival, and neuronal differentiation and altered cell death in the dentate gyrus of the hippocampus and the amygdala. In addition, social isolation reduced cell proliferation in the medial preoptic area and cell survival in the ventromedial hypothalamus. These data suggest that long-term social isolation affects distinct stages of adult neurogenesis in specific limbic brain regions. In Experiment 2, isolated females displayed higher levels of anxiety-like behaviors in both the open field and elevated plus maze tests and higher levels of depression-like behavior in the forced swim test than controls. Further, isolated females showed a higher level of affiliative behavior than controls, but the two groups did not differ in social recognition memory. Together, our data suggest that social isolation not only impairs cell proliferation, survival, and neuronal differentiation in limbic brain areas, but also alters anxiety-like, depression-like, and affiliative behaviors in adult female prairie voles. These data warrant further investigation of a possible link between altered neurogenesis within the limbic system and behavioral changes.  相似文献   

6.
This study tested the hypothesis that intraspecific variations in mating systems are correlated with differences in the capacity of peripheral arginine vasopressin (AVP) to facilitate partner preferences. It has been hypothesized that differences in environmental conditions, Kansas being more xeric than Illinois, are responsible for some of the intraspecific differences in the mating systems between Kansas (KN) and Illinois (IL) prairie voles. We predicted that prairie voles from KN would be more behaviorally sensitive to peripheral AVP than prairie voles from IL. To test this hypothesis 60- to 120-day-old male and female, lab-reared, prairie voles originating from KN and IL received three subcutaneous injections of AVP or isotonic saline. Animals were then placed with an adult member of the opposite sex, designated a "partner," for a 1-hour period of cohabitation and subsequently tested for preference for the familiar partner versus a comparable stranger. Only KN males treated with AVP displayed a significant preference for the partner. Using the same experimental paradigm we also examined the ability of peripheral oxytocin (OT) to facilitate partner preference in KN prairie voles. OT facilitated partner preference in females, but not males. This finding was consistent with previous results describing the effects of peripheral OT in IL prairie voles. We also examined the hypothesis that the differential response of KN and IL males would be associated with differences in the distribution of AVP (V1a) receptors. However, there was no apparent difference in the distribution of V(1a) receptors between KN and IL males. The results of this study indicate that there is both intraspecific and intersexual variation in the regulation of social behavior in prairie voles. In addition, these findings suggest that the proximate causes of intraspecific variation may be predicted by knowledge of the habitat of origin.  相似文献   

7.
Centrally administered oxytocin (OT) facilitates social behaviors including the partner preferences that characterize the monogamous social system of prairie voles. In contrast peripherally administered OT generally has been ineffective in influencing central processes including behavior. OT from the posterior pituitary gland is released in pulses into the peripheral circulation. We hypothesized that peripherally administered OT, if delivered in repeated injections mimicking these pulses, would influence behavior. Male and female prairie voles received three subcutaneous injections of OT, a single injection of OT, or isotonic saline. Animals then were placed with an adult member of the opposite sex, designated as a "partner," for a 1-h period of cohabitation, and subsequently tested for preference for the familiar partner versus a comparable stranger. Females treated with pulses of peripheral OT (1, 5, or 20 microg) displayed a significant preference for the partner compared to control females, while females receiving a lower dose of OT (0.1 microg) or a single injection (20 microg) did not. There was also a significant within-group effect as pulsed OT-treated females spent more time with the partner when compared to the stranger, while control females spent equal amounts of time with the partner and stranger. Peripheral pulses of OT were no longer effective in inducing partner preferences when females were pretreated with a selective OT receptor antagonist, administered either peripherally or centrally. In contrast to females, peripheral treatment with OT did not facilitate the formation of partner preferences in males.  相似文献   

8.
Intraspecific variation in sociosexual behavior has typically been investigated in the context of its relationship with environmental factors, but neurogenetic factors can also influence sociosexual behavior. In laboratory studies of prairie voles (Microtus ochrogaster), length polymorphism of microsatellite DNA within the gene (avpr1a) encoding the vasopressin 1a receptor is correlated with variation in male sociosexual behavior. However, field studies of prairie voles have found the relationship between male avpr1a microsatellite allele length and sociosexual behavior to be more ambiguous, possibly because most males had alleles of intermediate length. We tested the hypothesis that avpr1a microsatellite allele length mediates male sociosexual behavior in field settings by releasing voles into field enclosures where every male possessed two avpr1a microsatellite alleles at least one standard error longer or shorter than the mean length in their population of origin. Voles from an Illinois and Kansas population were examined separately as social monogamy appears more prevalent in the Illinois population. Illinois males with long avpr1a microsatellite alleles had smaller home ranges and overlapped a greater proportion of the home range of the female that they overlapped the most. Kansas males showed the opposite pattern. Illinois, but not Kansas, males with long avpr1a microsatellite alleles sired offspring with more females and sired more litters. Our results support the hypothesis that genetic variation associated with the avpr1a gene plays a role in mediating male prairie vole sociosexual behavior in nature. However, the relationship between specific male behaviors and male avpr1a microsatellite allele length sometimes differed significantly between Kansas and Illinois voles, suggesting relationships between specific male sociosexual behaviors and polymorphism associated with the avpr1a locus are complex, possibly involving specific nucleotide sequences or other population‐specific genetic differences.  相似文献   

9.
This study examined whether neonatal paternal deprivation (PD: father was removed and pups were raised just by mother) or early deprivation (ED: pups were raised by both parents except separated from not only the dam but also the peers for three hours a day from PND 0 to 13) has long-term effects on anxiety and social behaviors of adult mandarin voles. Newborn mandarin voles of F2 generation were randomly assigned to one of three groups: bi-parental care (PC: pups were raised by both parents), PD and ED. The parental care behaviors of F1 generation were observed at the age of 0, 13 and 21 days (PND 0, 13, 21) of F2 generation of PC and PD groups. Moreover, each mandarin vole of F2 generation received an open field test and a social interaction test on PND 70 and PND 75, respectively. No significant differences of parental behavior were observed between mothers and fathers from PC families, showing typical parental behavior of socially monogamous rodents. In addition, no significant differences of maternal behaviors were found between mothers from PC and PD families, indicating no maternal compensation towards pups for the absence of the paternal care. In the open field test, mandarin voles from both PD and ED families displayed higher levels of anxiety and lower locomotor activity, relative to offspring of PC family. In the social interaction test, both PD and ED mandarin voles also showed lower levels of social behavior and higher levels of anxiety. Thus, both PD and ED significantly increase anxiety and reduce social behavior of adult mandarin voles, suggesting that variation in parental investment may lead to variation in anxiety and social behaviors in rodents with different mating systems.  相似文献   

10.
The present study examines the developmental consequences of neonatal exposure to oxytocin on adult social behaviors in female prairie voles (Microtus ochrogaster). Female neonates were injected within 24 h of birth with isotonic saline or one of four dosages of oxytocin (OT). As adults, females were tested in an elevated plus-maze paradigm (a measure of anxiety and exploratory behavior), and for alloparental behavior and partner preferences. At 2 mg/kg OT, females took longer to approach pups, but were the only group to form a statistically significant within-group partner preference. At 4 mg/kg OT, females retrieved pups significantly more frequently but no longer displayed a partner preference; while females treated developmentally with 8 mg/kg spent significantly more time in side-to-side contact with a male stranger than any other treatment group. OT may have broad developmental consequences, but these effects are not linear and may both increase and decrease the propensity to display behaviors such as pair-bonding.  相似文献   

11.
Oxytocin receptors (OXTR) in the nucleus accumbens (NAcc) promote alloparental behavior and partner preference formation in female prairie voles. Within the NAcc there is significant individual variation in OXTR binding and virgin juvenile and adult females with a high density of OXTR in the NAcc display an elevated propensity to engage in alloparental behavior toward novel pups. Over-expression of OXTR in the NAcc of adult female prairie voles using viral vector gene transfer facilitates partner preference formation, but has no effect on alloparental behavior, even though OXTR antagonists infused into the NAcc blocks both behaviors. We therefore hypothesized that long-term increases in OXTR signaling during development may underlie the relationship between adult OXTR density in the NAcc and alloparental behavior. To test this hypothesis, we used viral vector gene transfer to increase OXTR density in the NAcc of prepubertal, 21 day old female prairie voles and tested for both alloparental behavior and partner preference formation as adults. Consistent with a developmental impact of OXTR signaling, adults over-expressing OXTR from weaning display both increased alloparental behavior and partner preference formation. Thus, the relatively acute impact of elevated OXTR signaling in the NAcc on partner preference formation previously reported appears to be dissociable from the effects of longer term, developmentally relevant OXTR signaling necessary for modulating alloparental behavior. These results are consistent with the hypothesis that oxytocin can have both long-term “organizational” effects as well as acute “activational” effects on affiliative behaviors.  相似文献   

12.
Serotonin and octopamine have been implicated as modulators of posture and behavior in several crustaceans. Here we characterize the agonistic behaviors of normally interacting squat lobsters Munida quadrispina (Anomura, Galatheidae) and their responses to serotonin and octopamine injected into the ventral hemolymph sinus, in order to evaluate the potential roles of these amines in modulating agonistic behaviors. Normally interacting M. quadrispina do not develop lasting dominance hierarchies, although transient aggressive and submissive displays do occur. Injected serotonin elicits postures and behaviors in isolated individuals similar to those typical of aggressive, normally interacting animals. Injected octopamine can produce postures and behaviors typical of submissive animals, and elicits behaviors which imply a modulatory role for octopamine in tailflipping. The effects of both amines are reversible and dose dependent, and the dose-response curves parallel the normal progression of agonistic interactions. The social behaviors and reactions to injected serotonin and octopamine of M. quadrispina differ from those of lobsters and crayfish, indicating that interspecific differences in neuromodulation of behavior and motor output exist. Such differences have implications for the understanding of aminergic modulation of aggression and the evolution of aminergic modulation in crustaceans. Accepted: 22 June 1997  相似文献   

13.
Pharmacological studies in prairie voles have suggested that the neuropeptides oxytocin and vasopressin play important roles in behaviors associated with monogamy, including affiliation, paternal care, and pair bonding. Our laboratory has investigated the cellular and neuroendocrine mechanisms by which these peptides influence affiliative behavior and social attachment in prairie voles. Monogamous prairie voles have a higher density of oxytocin receptors in the nucleus accumbens than do nonmonogamous vole species; blockade of these receptors by site-specific injection of antagonist in the female prairie vole prevents partner preference formation. Prairie voles also have a higher density of vasopressin receptors in the ventral pallidal area, which is the major output of the nucleus accumbens, than montane voles. Both the nucleus accumbens and ventral pallidum are key relay nuclei in the brain circuits implicated in reward, such as the mesolimbic dopamine and opioid systems. Therefore, we hypothesize that oxytocin and vasopressin may be facilitating affiliation and social attachment in monogamous species by modulating these reward pathways.  相似文献   

14.
Stressful social conditions, such as isolation, that occur during sensitive developmental periods may alter present and future social behavior. Changes in the neuroendocrine mechanisms closely associated with affiliative behaviors and stress reactivity are likely to underlie these changes in behavior. In the present study, we assessed the effects of post-weaning social housing conditions on the neuropeptides arginine vasopressin (AVP) and oxytocin (OT), and components of the hypothalamic-pituitary-adrenal axis (corticotropin releasing factor: [CRF], and corticosterone: [CORT]) in the prairie vole (Microtus ochrogaster), a socially monogamous bi-parental rodent. Following weaning at 21 days of age, prairie voles were maintained in one of three housing conditions: social isolation (isolate), paired with a same sex sibling (sibling) or paired with a stranger (stranger) of the same sex and age. Housing conditions were maintained for either 4 or 21 days. Central CRF, AVP and OT immunoreactivity (ir) were quantified and circulating plasma CORT, AVP and OT were assayed. Isolated voles had higher CRF-ir in the paraventricular nucleus of the hypothalamus (PVN) compared with sibling and stranger housed voles. Plasma CORT was significantly higher in isolates. AVP-ir was significantly lower in the PVN of isolate females compared to either sibling females or stranger females. However, AVP-ir was significantly higher in the supraoptic nucleus (SON) of isolates compared to siblings. There were no differences in central OT-ir or plasma OT. These results identify neuroendocrine mechanisms which respond to isolation and potentially modulate behavior.  相似文献   

15.
《Hormones and behavior》2012,61(5):498-504
Oxytocin receptors (OXTR) in the nucleus accumbens (NAcc) promote alloparental behavior and partner preference formation in female prairie voles. Within the NAcc there is significant individual variation in OXTR binding and virgin juvenile and adult females with a high density of OXTR in the NAcc display an elevated propensity to engage in alloparental behavior toward novel pups. Over-expression of OXTR in the NAcc of adult female prairie voles using viral vector gene transfer facilitates partner preference formation, but has no effect on alloparental behavior, even though OXTR antagonists infused into the NAcc blocks both behaviors. We therefore hypothesized that long-term increases in OXTR signaling during development may underlie the relationship between adult OXTR density in the NAcc and alloparental behavior. To test this hypothesis, we used viral vector gene transfer to increase OXTR density in the NAcc of prepubertal, 21 day old female prairie voles and tested for both alloparental behavior and partner preference formation as adults. Consistent with a developmental impact of OXTR signaling, adults over-expressing OXTR from weaning display both increased alloparental behavior and partner preference formation. Thus, the relatively acute impact of elevated OXTR signaling in the NAcc on partner preference formation previously reported appears to be dissociable from the effects of longer term, developmentally relevant OXTR signaling necessary for modulating alloparental behavior. These results are consistent with the hypothesis that oxytocin can have both long-term “organizational” effects as well as acute “activational” effects on affiliative behaviors.  相似文献   

16.
Models of age-related effects on behavior predict that among short-lived species younger adults are more attractive and attracted to opposite-sex conspecifics than are older adults, whereas the converse is predicted for long-lived species. Although most studies of age-related effects on behavior support these predictions, they are not supported by many studies of scent marking, a behavior used in mate attraction. Over-marking, a form of scent marking, is a tactic used by many terrestrial mammals to convey information about themselves to opposite-sex conspecifics. The present study tested the hypothesis that the age of meadow voles, Microtus pennsylvanicus ; a microtine rodent, affects their over- and scent-marking behaviors when they encounter the marks of opposite-sex conspecifics. Sex differences existed in the over-marking behavior of adult voles among the three different age groups that were tested. Male voles that were 5–7 and 10–12 mo olds over-marked a higher proportion of the marks of females than did 2–3 mo old male voles. Female voles that were 2–3, 5–7, and 10–12 mo old over-marked a similar number of marks deposited by male voles. Overall, the data were not consistent with models predicting the behavior of short-lived animals such as rodents when they encounter the opposite sex. The differences in over-marking displayed by older and younger adult male voles may be associated with life history tradeoffs, the likelihood that they will encounter sexually receptive females, and being selected as mates.  相似文献   

17.
Copulatory behaviors in most rodents are highly sexually dimorphic, even when circulating hormones are equated between the sexes. Prairie voles (Microtus ochrogaster) are monomorphic in their display of some social behaviors, including partner preferences and parenting, but differences between the sexes in their masculine and feminine copulatory behavior potentials have not been studied in detail. Furthermore, the role of neonatal aromatization of testosterone to estradiol on the development of prairie vole sexual behavior potentials or their brain is unknown. To address these issues, prairie vole pups were injected daily for the first week after birth with 0.5 mg of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD) or oil. Masculine and feminine copulatory behaviors in response to testosterone or estradiol were later examined in both sexes. Males and females showed high mounting and thrusting in response to testosterone, but only males reliably showed ejaculatory behavior. Conversely, males never showed feminine copulatory behaviors in response to estradiol. Sex differences in these behaviors were not affected by neonatal ATD, but ATD-treated females received fewer mounts and thrusts than controls, possibly indicating reduced attractiveness to males. In other groups of subjects, neonatal ATD demasculinized males' tyrosine hydroxylase expression in the anteroventral periventricular preoptic area, and estrogen receptor alpha expression in the medial preoptic area. Thus, although sexual behavior in both sexes of prairie voles is highly masculinized, aromatase during neonatal life is necessary only for females' femininity. Furthermore, copulatory behavior potentials and at least some aspects of brain development in male prairie voles are dissociable by their requirement for neonatal aromatase.  相似文献   

18.
The neuropeptide vasopressin and its receptor V1aR are broadly implicated in social behavior and play a central role in several key aspects of male mating tactics in voles. In the prairie vole, a microsatellite in the cis-regulatory region of the gene encoding V1aR (avpr1a) provides a potential genetic basis for individual variation in neural phenotype and behavior; recent studies found that allele length predicts V1aR expression and male social attachment in the laboratory. Here, we explore the relationship between avpr1a microsatellite length, V1aR neural phenotype, and field measures of monogamy and fitness in male prairie voles. We found significant effects of allele length on V1aR expression in structures integral to pairbond formation. These effects did not, however, translate to differences in mating tactics or reproductive success. Together, these data suggest that, while length polymorphism in the avpr1a microsatellite influences neuronal phenotype, this variation does not contribute significantly to male reproductive success and field behavior. We propose that previously reported behavioral effects may be mediated primarily by sequence variation at this locus, for which allele length is an imperfect proxy. By combining genetic, neuronal and ecological approaches, these data provide novel insights into the contribution of genotype to natural diversity in brain and behavior.  相似文献   

19.
The behaviors of three different adult male–adult female pairs of golden-bellied mangabeys (Cercocebus galeritus chrysogaster) were compared. Correlates of restricted social conditions and of the presence of offspring on adult behavior and direction of aggressive behaviors were noted. A captive pair displayed self-biting and other aberrant behaviors, a lone wild-caught pair showed redirected aggression related to sex, and a pair housed with its offspring showed close social proximity and protection of an infant. The implications of housing and experience for space and visitor exposure are discussed. Observer- vs. visitor-directed displays are seen as important measures of group and visitor effects.  相似文献   

20.
Serotonin and oxytocin influence aggressive and anxiety‐like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety‐like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open‐field, olfactory habituation/dishabituation or, surprisingly, anxiety‐like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident‐intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety‐like behaviors or maternal care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号