首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed a series of polymorphic markers on chromosome 16p13 in 17 families with carbohydrate-deficient glycoprotein syndrome type I (CDG1). First, linkage to the region between D16S406 and D16S500 is confirmed. The telomeric border of the candidate region is now definitively placed proximal to D16S406 by crossovers observed in 2 families. Second, in 1 family with 2 affected siblings, the disease is not linked to chromosome 16p. Genetic heterogeneity has not been previously reported for CDG1, and this observation has implications for prenatal diagnosis. Third, allelic associations suggest that the disease locus is localized close to D16S414/D16S497. This places the region of interest centromeric of its published localization.  相似文献   

2.
人类混血群体可以说是混合群体的一种特例.在无选择、无突变、无限随机交配群体的假定前提下,研究了亲本群体的基因频率对混血群体及其衍生后代群体连锁不平衡结构的影响,导出了各群体连锁不平衡值的表达式,建立了一个估计基因间重组率的简便方法;同时, 采用估算分子标记与QTL之间连锁不平衡系数的统计分析方法,分析了人类混血群体及其衍生后代群体QTL检测与估计的关系,建立了该关系的系列理论公式.研究结果表明,本方法不仅适用于人类疾病(包括复杂遗传疾病)基因定位,而且适合于人类正常基因的定位,同时也适用于人类普通多基因性状的QTL分析.  相似文献   

3.
X-linked dystonia-parkinsonism (XDP) is a recessive disorder characterized by generalized dystonia with some patients exhibiting parkinsonism. The disease gene, DYT3, is located between DXS453 (DXS993) and DXS559, and strongest linkage disequilibrium is found distal to DXS7117 and proximal to DXS559. We have isolated and analyzed four novel polymorphic markers between DXS7117 and DXS559 and, by haplotype analysis, have narrowed the candidate interval to <350 kb. A sequence-ready contig of 700 kb has been constructed spanning DXS7117 to DXS559 and is composed of 35 PACs, BACs, and cosmids. Nine genes and novel ESTs have been mapped into this contig, and mutations in the coding regions and intron-exon borders of two genes have been excluded as the cause of XDP. Several of the other genes and ESTs located within the contig code for proteins implicated in normal brain development and function and are candidates for DYT3.  相似文献   

4.
Carbohydrate-deficient glycoprotein syndrome type I (CDGS) is an inherited metabolic disorder with multisystemic abnormalities resulting from a failure to add entire N-linked oligosaccharide chains to many glycoproteins. Fibroblasts from these patients also abnormally glycosylate proteins, but this lesion is corrected by providing 250 μm mannose to the culture medium. This correction of protein glycosylation suggests that providing dietary mannose to elevate blood mannose concentrations might also remedy some of the underglycosylation observed in these patients. We find that ingested mannose is efficiently absorbed and increases blood mannose levels in both normal subjects and CDGS patients. Blood mannose levels increased in a dose-dependent fashion with increasing oral doses of mannose (0.07–0.21 g mannose/kg body weight). Peak blood mannose concentrations occurred at 1–2 h following ingestion and the clearance half-time was approximately 4 h. Doses of 0.1 g mannose/kg body weight given at 3-h intervals maintained blood mannose concentrations at levels 3- to 5-fold higher than the basal level in both normal controls (∼55 μm) and CDGS patients. No side effects were observed for this dosage regimen. These results establish the feasibility of using mannose as a potential therapeutic dietary supplement (nutraceutical) to treat CDGS patients.  相似文献   

5.
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of ~5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A “111-bp” allele for the mfd220 locus was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant (χ2 =50.7; P<.0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus.  相似文献   

6.
The gene for autosomal dominant polycystic kidney disease (PKD1) is located on chromosome 16p, between the flanking markers D16S84 and D16S125 (26.6prox). This region is 750 kb long and has been cloned. We have looked at the association of 10 polymorphic markers from the region, with the disease and with each other. This was done in a set of Scottish families that had previously shown association with D16S94, a marker proximal to the PKD1 region. We report significant association between two CA repeat markers and the disease but have not found evidence for a single founder haplotype in these families, indicating the presence of several mutations in this population. Our results favor a location of the PKD1 gene in the proximal part of the candidate region.  相似文献   

7.
Gene Conversion, Linkage, and the Evolution of Multigene Families   总被引:1,自引:1,他引:1       下载免费PDF全文
T. Nagylaki 《Genetics》1988,120(1):291-301
The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order epsilon [i.e., O(epsilon)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(epsilon); they are evaluated explicitly with an error of O(epsilon 2); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(epsilon 2) and O(epsilon), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(epsilon) in a time of O(-ln epsilon). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.  相似文献   

8.
A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.  相似文献   

9.
The gene locus of Machado-Joseph disease (MJD) has recently been mapped within a 29-cM subregion of 14q chromosome. We did a linkage study of 24 multigenerational MJD Japanese pedigrees, in an attempt to narrow the candidate region of this gene. Pairwise and multipoint linkage analysis, together with haplotype segregation analysis, led to the conclusion that the MJD gene is located at the 6.8-cM interval between D14S256 and D14S81 (Zmax = 24.78, multipoint linkage analysis). D14S291 and D14S280, located at the center of this interval, showed no obligate recombination with the MJD gene (Zmax = 5.93 for D14S291 and 9.99 for D14S280). A weak, but significant, linkage disequilibrium of MJD gene was noted with D14S81 (P < .05) but not with D14S291 or D14S280. These results suggest that a 3.6-cM interval flanked by D14S291/D14S280 and D14S81 is the most likely location of the MJD gene and that it is closest to D14S81.  相似文献   

10.
11.
Glycoprotein 330 (Gp330) is a member of the low-density lipoprotein receptor gene family that is expressed in the kidney. We have mapped the Gp330 gene to mouse chromosome 2, 4.5 cM proximal to Acra, in an interspecific backcross of (C57BL/6J × Mus spretus) F1 × C57BL/6J.  相似文献   

12.
目的 获得高表达的Ⅰ型单纯疱疹病毒(HSV)被膜糖蛋白gD(简称gD1)基因的工程菌。方法 通过计算机分析,筛选出疱疹病毒gD1中优势抗原决定簇的基因片段。将克隆的基因片段插入表达载体pTrxA内,转化大肠杆菌Rosetta,以异丙基-β-D-硫代半乳糖苷诱导表达。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析表达产物。 结果 PCR扩增出约930bp的gD1编码基因目的片段,与预期片段大小相符,经测序鉴定无基因突变;所构建pTrxA-gD1重组表达质粒阳性克隆经PCR与双酶切鉴定,与预期结果一致;含有pTrxA-gD1重组质粒的大肠杆菌Rosetta诱导后得到了高效达,SDS-PAGE显示表达产物约Mr48000(Dalton)。免疫印迹结果表明表达产物具有较好的抗原性。结论 成功构建了pTrxA-gD1表达质粒,实现了成熟gD1蛋白在大肠杆菌中的高效表达,表达产物具有好的抗原性。  相似文献   

13.
A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus (BYD)), and morphological traits (rachilla hair length, lodicule size) with AFLP markers and SSR markers were found. Known major genes and QTLs were confirmed, but also new putative QTLs were found. The LD mapping clearly indicated the common occurrence of Rph3, a gene for hypersensitivity resistance against Puccinia hordei, and also confirmed the QTL Rphq2 for prolonging latency period of P. hordei in seedlings. We also found strong indication for a hitherto not reported gene for resistance or tolerance to BYD on chromosome 2, linked to SSR marker HVM054. Our conclusion is that LD mapping is a valuable additional tool in the search for applicable marker associations with major genes and QTLs. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
The hemochromatosis gene (HFE) maps to 6p21.3 and is less than 1 cM from the HLA class I genes; however, the precise physical location of the gene has remained elusive and controversial. The unambiguous identification of a crossover event within hemochromatosis families is very difficult; it is particularly hampered by the variability of the phenotypic expression as well as by the sex- and age-related penetrance of the disease. For these practical considerations, traditional linkage analysis could prove of limited value in further refining the extrapolated physical position of HFE. We therefore embarked upon a linkage-disequilibrium analysis of HFE and normal chromosomes from the Brittany population. In the present report, 66 hemochromatosis families yielding 151 hemochromatosis chromosomes and 182 normal chromosomes were RFLP-typed with a battery of probes, including two newly derived polymorphic markers from the 6.7 and HLA-F loci located 150 and 250 kb telomeric to HLA-A, respectively. The results suggest a strong peak of existing linkage disequilibrium focused within the i82-to-6.7 interval (approximately 250 kb). The zone of linkage disequilibrium is flanked by the i97 locus, positioned 30 kb proximal to i82, and the HLA-F gene, found 250 kb distal to HLA-A, markers of which display no significant association with HFE. These data support the possibility that HFE resides within the 400-kb expanse of DNA between i97 and HLA-F. Alternatively, the very tight association of HLA-A3 and allele 1 of the 6.7 locus, both of which are comprised by the major ancestral or founder HFE haplotype in Brittany, supports the possibility that the disease gene may reside immediately telomeric to the 6.7 locus within the linkage-disequilibrium zone. Additionally, hemochromatosis haplotypes possessing HLA-A11 and the low-frequency HLA-F polymorphism (allele 2) are supportive of a separate founder chromosome containing a second, independently arising mutant allele. Overall, the establishment of a likely “hemochromatosis critical region” centromeric boundary and the identification of a linkage-disequilibrium zone both significantly contribute to a reduction in the amount of DNA required to be searched for novel coding sequences constituting the HFE defect.  相似文献   

15.
16.
Usher syndrome type II is associated with hearing loss and retinitis pigmentosa but not with any vestibular problems. It is known to be genetically heterogeneous, and one locus (termed USH2A) has been linked to chromosome 1q41. In an effort to refine the localization of USH2A, the genetic map of the region between and adjacent to the marker loci previously recognized as flanking USH2A (D1S70 and PPOL) is updated. Analysis of marker data on 68 Usher II families places the USH2A gene into a 2.1-cM region between the markers D1S237 and D1S229. The gene for transforming growth factor β2 (TGFB2) and the gene for the homeodomain box (HLX1) are both eliminated as candidates for USH2A, by virtue of their localization outside these flanking markers. The earlier finding of genetic heterogeneity was confirmed in six new families, and the proportion of unlinked Usher II families is estimated at 12.5%. The placement of the USH2A gene into this region will aid in the physical mapping and isolation of the gene itself.  相似文献   

17.
Correlation between expression level of the bovine DNAJA1 gene and meat tenderness was recently found in Charolais longissimus thoracis muscle samples, suggesting that this gene could play an important role in meat tenderness. Here, we report the validation of polymorphisms within the bovine DNAJA1 gene, and the haplotype variability and extent of linkage disequilibrium in the three main French beef breeds (Blonde d’Aquitaine, Charolais, Limousin). Genotyping 18 putative SNPs revealed that 16 SNPs were polymorphic within the breeds tested. Two SNPs were removed from further analyses as one SNP had a low genotyping call rate, while the other SNP was not in Hardy–Weinberg equilibrium. The degree of heterozygosity observed for the remaining 14 SNPs varied between breeds, with Charolais being the breed with the highest genetic variation and Blonde d’Aquitaine the lowest. Linkage disequilibrium and haplotype structure of DNAJA1 were different between breeds. Eighteen different haplotypes, including three shared by all breeds, were discovered, and two to three tag SNPs (depending on the breed) are sufficient to capture all the genetic variability seen in these haplotypes. The results of this study will facilitate the design of optimal future association studies evaluating the role of the DNAJA1 gene in meat tenderness.  相似文献   

18.
Approximately 2%–5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings, by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between −24 and −62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families.  相似文献   

19.
The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequiligrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan.  相似文献   

20.
The zebra finch has long been an important model system for the study of vocal learning, vocal production, and behavior. With the imminent sequencing of its genome, the zebra finch is now poised to become a model system for population genetics. Using a panel of 30 noncoding loci, we characterized patterns of polymorphism and divergence among wild zebra finch populations. Continental Australian populations displayed little population structure, exceptionally high levels of nucleotide diversity (π = 0.010), a rapid decay of linkage disequilibrium (LD), and a high population recombination rate (ρ ≈ 0.05), all of which suggest an open and fluid genomic background that could facilitate adaptive variation. By contrast, substantial divergence between the Australian and Lesser Sunda Island populations (KST = 0.193), reduced genetic diversity (π = 0.002), and higher levels of LD in the island population suggest a strong but relatively recent founder event, which may have contributed to speciation between these populations as envisioned under founder-effect speciation models. Consistent with this hypothesis, we find that under a simple quantitative genetic model both drift and selection could have contributed to the observed divergence in six quantitative traits. In both Australian and Lesser Sundas populations, diversity in Z-linked loci was significantly lower than in autosomal loci. Our analysis provides a quantitative framework for studying the role of selection and drift in shaping patterns of molecular evolution in the zebra finch genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号