首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of CD95 (APO-1/Fas) by its natural ligand CD95L (APO-1L/FasL) leads to the formation of the death-inducing signaling complex. Here we report that upon CD95 stimulation in several T and B cell lines, a novel signaling complex is formed, which we term complex II. Complex II is composed of the death effector domain proteins as follows: procaspase-8a/b, three isoforms of c-FLIP (c-FLIP(L), c-FLIP(S), c-FLIP(R)), and FADD. Notably, complex II does not contain CD95. Based on our findings we suggest that CD95 signaling includes two steps. The first step involves formation of the death-inducing signaling complex at the cell membrane. The second step involves formation of the cytosolic death effector domain protein-containing complex that may play an important role in amplification of caspase activation.  相似文献   

2.
In the early phase of an immune response, T cells are activated and acquire effector functions. Whereas these short term activated T cells are resistant to CD95-mediated apoptosis, activated T cells in prolonged culture are readily sensitive, leading to activation-induced cell death and termination of the immune response. The translation inhibitor, cycloheximide, partially overcomes the apoptosis resistance of short term activated primary human T cells. Using this model we show in this study that sensitization of T cells to apoptosis occurs upstream of mitochondria. Neither death-inducing signaling complex formation nor expression of Bcl-2 proteins is altered in sensitized T cells. Although the caspase-8 inhibitor c-FLIP(long) was only slightly down-regulated in sensitized T cells, c-FLIP(short) became almost undetectable. This correlated with caspase-8 activation and apoptosis. These data suggest that c-FLIP(short), rather than c-FLIP(long), confers resistance of T cells to CD95-mediated apoptosis in the context of immune responses.  相似文献   

3.
To investigate apoptosis resistance upon restimulation in human peripheral blood T lymphocytes, we used the following in vitro model. This model represents the main features of T cell reactivity: freshly isolated PHA-activated T cells cultured in IL-2 for a prolonged period of time develop a CD95 (APO-1/Fas) apoptosis-sensitive phenotype. These T cells represent activation-induced cell death-sensitive T cells during the down phase of an immune response. A fraction of apoptosis-sensitive activated T cells becomes apoptosis resistant upon TCR/CD3 restimulation. CD95 apoptosis sensitivity requires formation of a functional receptor associated death-inducing signaling complex (DISC), i.e., a protein complex of CD95 receptors, the adaptor Fas-associated death domain protein (FADD)/MORT1 and caspase-8 (FADD-like IL-1ss-converting enzyme (FLICE), MACH, Mch5). We identified activation of procaspase-8 at the DISC as the main target for the protective activity of TCR/CD3 restimulation. We found that procaspase-8 cleavage is reduced in T cells after TCR/CD3 restimulation. In addition, we detected up-regulation of c-FLIP(S) (the short splice variant of the cellular FLICE inhibitory protein) and strongly enhanced recruitment of c-FLIP(S) into the DISC. These data suggest that the recruitment of c-FLIP(S) into the DISC results in reduced DISC and caspase-8 activity.  相似文献   

4.
The CD95 (Fas/APO-1) death-inducing signaling complex (DISC) is essential for the initiation of CD95-mediated apoptotic and nonapoptotic responses. The CD95 DISC comprises CD95, FADD, procaspase-8, procaspase-10, and c-FLIP proteins. Procaspase-8 and procaspase-10 are activated at?the DISC, leading to the formation of active caspases and apoptosis initiation. In this study we analyzed the?stoichiometry of the CD95 DISC. Using quantitative western blots, mass spectrometry, and mathematical modeling, we reveal that the amount of DED proteins procaspase-8/procaspase-10 and c-FLIP at the DISC exceeds that of FADD by several-fold. Furthermore, our findings imply that procaspase-8, procaspase-10, and c-FLIP could form DED chains at the DISC, enabling the formation of dimers and efficient activation of caspase-8. Taken together, our findings provide an enhanced understanding of caspase-8 activation and initiation of apoptosis at the DISC.  相似文献   

5.
The Fas/Fas ligand (L) system plays an important role in the maintenance of peripheral B cell tolerance and the prevention of misguided T cell help. CD40-derived signals are required to induce Fas expression on virgin B cells and to promote their susceptibility to Fas-mediated apoptosis. In the current study, we have analyzed the early biochemical events occurring upon Fas ligation in CD40L-activated primary human tonsillar B cells with respect to Fas-associated death domain protein (FADD), caspase-8/FADD-like IL-1beta-converting enzyme (FLICE), and c-FLICE inhibitory protein (FLIP). We report here that Fas-induced apoptosis in B cells does not require integrity of the mitochondrial Apaf-1 pathway and that caspase-8 is activated by association with the death-inducing signaling complex (DISC), i.e., upstream of the mitochondria. We show that both FADD and the zymogen form of caspase-8 are constitutively expressed at high levels in virgin B cells, whereas c-FLIP expression is marginal. In contrast, c-FLIP, but neither FADD nor procaspase-8, is strongly up-regulated upon ligation of CD40 or the B cell receptor on virgin B cells. Finally, we have found that c-FLIP is also recruited and cleaved at the level of the DISC in CD40L-activated virgin B cells. We propose that c-FLIP expression delays the onset of apoptosis in Fas-sensitive B cells. The transient protection afforded by c-FLIP could offer an ultimate safeguard mechanism against inappropriate cell death or allow recruitment of phagocytes to ensure efficient removal of apoptotic cells.  相似文献   

6.
Here we show a novel mechanism by which FLICE-like inhibitory protein (c-FLIP) regulates apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and one of its receptors, DR5. c-FLIP is a critical regulator of the TNF family of cytokine receptor signaling. c-FLIP has been postulated to prevent formation of the competent death-inducing signaling complex (DISC) in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. In order to identify regulators of TRAIL function, we used the intracellular death domain (DD) of DR5 as a target to screen a phage-displayed combinatorial peptide library. The DD of DR5 selected from the library a peptide that showed sequence similarity to a stretch of amino acids in the C terminus of c-FLIP(L). The phage-displayed peptide selectively interacted with the DD of DR5 in in vitro binding assays. Similarly, full-length c-FLIP (c-FLIP(L)) and the C-terminal p12 domain of c-FLIP interacted with DR5 both in in vitro pull-down assays and in mammalian cells. This interaction was independent of TRAIL. To the contrary, TRAIL treatment released c-FLIP(L) from DR5, permitting the recruitment of FADD to the active DR5 signaling complex. By employing FADD-deficient Jurkat cells, we demonstrate that DR5 and c-FLIP(L) interact in a FADD-independent manner. Moreover, we show that a cellular membrane permeable version of the peptide corresponding to the DR5 binding domain of c-FLIP induces apoptosis in mammalian cells. Taken together, these findings indicate that c-FLIP interacts with the DD of DR5, thus preventing death (L)signaling by DR5 prior to the formation of an active DISC. Because TRAIL and DR5 are ubiquitously expressed, the interaction of c-FLIP(L) and DR5 indicates a mechanism by which tumor selective apoptosis can be achieved through protecting normal cells from undergoing death receptor-induced apoptosis.  相似文献   

7.
Apoptosis (programmed cell death) is common to all multicellular organisms. Apoptosis plays a central role in cell differentiation, removal of damaged cells, and the homeostasis of the immune system. There are two apoptosis signal pathways: the extrinsic (transmitted through death receptors (DR)) or the intrinsic (mitochondrial) death pathways. A death receptor, CD95 (Fas/APO-1), was discovered 20 years ago. This review is focused on the mechanisms of death receptor-induced apoptosis via CD95 (Fas/APO-1)-mediated apoptosis and the role of the antiapoptotic protein c-FLIP in the extrinsic apoptosis regulation. The regulation of this pathway is crucial for the immune system. Defects in the regulation of CD95-mediated result in serious diseases such as cancer, autoimmunity, and AIDS. Therefore, gaining insights into apoptosis will have wide implications for developing approaches to treatment strategies of these diseases.  相似文献   

8.
c-FLIPR, a new regulator of death receptor-induced apoptosis   总被引:12,自引:0,他引:12  
c-FLIPs (c-FLICE inhibitory proteins) play an essential role in regulation of death receptor-induced apoptosis. Multiple splice variants of c-FLIP have been described on the mRNA level; so far only two of them, c-FLIP(L) and c-FLIP(S,) had been found to be expressed at the protein level. In this report, we reveal the endogenous expression of a third isoform of c-FLIP. We demonstrate its presence in a number of T and B cell lines as well as in primary human T cells. We identified this isoform as c-FLIP(R), a death effector domain-only splice variant previously identified on the mRNA level. Impor-/tantly, c-FLIP(R) is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex upon CD95 stimulation. Several properties of c-FLIP(R) are similar to c-FLIP(S): both isoforms have a short half-life, a similar pattern of expression during activation of primary human T cells, and are strongly induced in T cells upon CD3/CD28 costimulation. Taken together, our data demonstrate endogenous expression of c-FLIP(R) and similar roles of c-FLIP(R) and c-FLIP(S) isoforms in death receptor-mediated apoptosis.  相似文献   

9.
Regulation of CD95/Fas signaling at the DISC   总被引:1,自引:0,他引:1  
CD95 (APO-1/Fas) is a member of the death receptor (DR) family. Stimulation of CD95 leads to induction of apoptotic and non-apoptotic signaling pathways. The formation of the CD95 death-inducing signaling complex (DISC) is the initial step of CD95 signaling. Activation of procaspase-8 at the DISC leads to the induction of DR-mediated apoptosis. The activation of procaspase-8 is blocked by cellular FLICE-inhibitory proteins (c-FLIP). This review is focused on the role in the CD95-mediated signaling of the death effector domain-containing proteins procaspase-8 and c-FLIP. We discuss how dynamic cross-talk between procaspase-8 and c-FLIP at the DISC regulates life/death decisions at CD95.  相似文献   

10.
We and others have demonstrated that Fas-mediated apoptosis is a potential therapeutic target for cholangiocarcinoma. Previously, we reported that CaM (calmodulin) antagonists induced apoptosis in cholangiocarcinoma cells through Fas-related mechanisms. Further, we identified a direct interaction between CaM and Fas with recruitment of CaM into the Fas-mediated DISC (death-inducing signalling complex), suggesting a novel role for CaM in Fas signalling. Therefore we characterized the interaction of CaM with proteins recruited into the Fas-mediated DISC, including FADD (Fas-associated death domain)-containing protein, caspase 8 and c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-like inhibitory protein}. A Ca(2+)-dependent direct interaction between CaM and FLIP(L), but not FADD or caspase 8, was demonstrated. Furthermore, a 37.3+/-5.7% increase (n=6, P=0.001) in CaM-FLIP binding was observed at 30 min after Fas stimulation, which returned to the baseline after 60 min and correlated with a Fas-induced increase in intracellular Ca(2+) that reached a peak at 30 min and decreased gradually over 60 min in cholangiocarcinoma cells. A CaM antagonist, TFP (trifluoperazine), inhibited the Fas-induced increase in CaM-FLIP binding concurrent with inhibition of ERK (extracellular-signal-regulated kinase) phosphorylation, a downstream signal of FLIP. Direct binding between CaM and FLIP(L) was demonstrated using recombinant proteins, and a CaM-binding region was identified in amino acids 197-213 of FLIP(L). Compared with overexpression of wild-type FLIP(L) that resulted in decreased spontaneous as well as Fas-induced apoptosis, mutant FLIP(L) with deletion of the CaM-binding region resulted in increased spontaneous and Fas-induced apoptosis in cholangiocarcinoma cells. Understanding the biology of CaM-FLIP binding may provide new therapeutic targets for cholangiocarcinoma and possibly other cancers.  相似文献   

11.
Activation of the caspase cascade is a pivotal step in apoptosis and can occur via death adaptor-mediated homo-oligomerization of initiator procaspases. Here we show that c-FLIP(L), a protease-deficient caspase homolog widely regarded as an apoptosis inhibitor, is enriched in the CD95 death-inducing signaling complex (DISC) and potently promotes procaspase-8 activation through hetero-dimerization. c-FLIP(L) exerts its effect through its protease-like domain, which associates efficiently with the procaspase-8 protease domain and induces the enzymatic activity of the zymogen. Ectopic expression of c-FLIP(L) at physiologically relevant levels enhances procaspase-8 processing in the CD95 DISC and promotes apoptosis, while a decrease of c-FLIP(L) expression results in inhibition of apoptosis. c-FLIP(L) acts as an apoptosis inhibitor only at high ectopic expression levels. Thus, c-FLIP(L) defines a novel type of caspase regulator, distinct from the death adaptors, that can either promote or inhibit apoptosis.  相似文献   

12.
Upon stimulation, CD95 (APO-1/Fas) recruits the adapter molecule FADD/MORT1, procaspase-8, and the cellular FLICE-inhibitory proteins (c-FLIP) into the death-inducing signaling complex (DISC). According to the induced proximity model, procaspase-8 is activated in the DISC in an autoproteolytic manner by two subsequent cleavage steps. c-FLIP proteins exist as a long (c-FLIP(L)) and a short (c-FLIP(S)) splice variant, both of them capable of protecting cells from death receptor-mediated apoptosis. In stably transfected BJAB cells, both c-FLIP(S) and c-FLIP(L) block procaspase-8 activation at the DISC. However, cleavage is blocked at different steps. c-FLIP(L) allows the first cleavage step of procaspase-8, leading to the generation of the p10 subunit. In contrast, c-FLIP(S) completely inhibits cleavage of procaspase-8. Interestingly, p43-c-FLIP(L) lacking the p12 subunit also prevents cleavage of procaspase-8. In contrast, a nonprocessable mutant of c-FLIP(L) allows the first cleavage of procaspase-8. In conclusion, both c-FLIP proteins prevent caspase-8 activation at different levels of procaspase-8 processing at the DISC. Our results indicate that c-FLIP(L) induces a conformation of procaspase-8 that allows partial but not complete proteolytical processing, whereas in contrast c-FLIP(S) even prevents partial procaspase-8 activation at the DISC.  相似文献   

13.
Apoptosis induction through CD95 (APO-1/Fas) critically depends on generation of active caspase-8 at the death-inducing signaling complex (DISC). Depending on the cell type, active caspase-8 either directly activates caspase-3 (type I cells) or relies on mitochondrial signal amplification (type II cells). In MCF7-Fas cells that are deficient for pro-caspase-3, even high amounts of caspase-8 produced at the DISC cannot directly activate downstream effector caspases without mitochondrial help. Overexpression of Bcl-x(L) in these cells renders them resistant to CD95-mediated apoptosis. However, activation of caspase-8 in control (vector) and Bcl-x(L) transfectants of MCF7-Fas cells proceeds with similar kinetics, resulting in a complete processing of cellular caspase-8. Most of the cytosolic caspase-8 substrates are not cleaved in the Bcl-x(L) protected cells, raising the question of how Bcl-x(L)-expressing MCF7-Fas cells survive large amounts of potentially cytotoxic caspase-8. We now demonstrate that active caspase-8 is initially generated at the DISC of both MCF7-Fas-Vec and MCF7-Fas-Bcl-x(L) cells and that the early steps of CD95 signaling such as caspase-8-dependent cleavage of DISC bound c-FLIP(L), caspase-8-dependent clustering, and internalization of CD95, as well as processing of pro-caspase-8 bound to mitochondria are very similar in both transfectants. However, events downstream of mitochondria, such as release of cytochrome c, only occur in the vector-transfected MCF7-Fas cells, and no in vivo caspase-8 activity can be detected in the Bcl-x(L)-expressing cells. Our data suggest that, in Bcl-x(L)-expressing MCF7-Fas cells, active caspase-8 is sequestered on the outer mitochondrial surface presumably by association with the protein "bifunctional apoptosis regulator" in a way that does not allow substrates to be cleaved, identifying a novel mechanism of regulation of apoptosis sensitivity by mitochondrial Bcl-x(L).  相似文献   

14.
We have recently identified two different pathways of CD95-mediated apoptosis (Scaffidi, C., Fulda, S., Srinivasan, A., Feng, L., Friesen, C., Tomaselli, K. J., Debatin, K.-M., Krammer, P. H., and Peter, M. E. (1998) EMBO J. 17, 1675-1687). CD95-mediated apoptosis in type I cells is initiated by large amounts of active caspase-8 formed at the death-inducing signaling complex (DISC) followed by direct cleavage of caspase-3. In contrast, in type II cells very little DISC and small amounts of active caspase-8 sufficient to induce the apoptogenic activity of mitochondria are formed causing a profound activation of both caspase-8 and caspase-3. Only in type II cells can apoptosis be blocked by overexpressed Bcl-2 or Bcl-x(L). We now show that a number of apoptosis-inhibiting or -inducing stimuli only affect apoptosis in type II cells, indicating that they act on the mitochondrial branch of the CD95 pathway. These stimuli include the activation of protein kinase C, which inhibits CD95-mediated apoptosis resulting in a delayed cleavage of BID, and the induction of apoptosis by the ceramide analog C(2)-ceramide. In addition, we have identified the CD95 high expressing cell line Boe(R) as a CD95 apoptosis-resistant type II cell that can be sensitized by treatment with cycloheximide without affecting formation of the DISC. This also places the effects of cycloheximide in the mitochondrial branch of the type II CD95 pathway. In contrast, c-FLIP was found to block CD95-mediated apoptosis in both type I and type II cells, because it acts directly at the DISC of both types of cells.  相似文献   

15.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

16.
The adapter molecule Fas-associated death domain protein (FADD)/mediator of receptor-induced toxicity-1 (MORT1) is essential for signal transduction of the apoptosis-inducing receptor CD95 (APO-1/Fas) as it connects the activated receptor with the effector caspase-8. FADD also plays a role in embryonic development and the cell cycle reentry of T cells. FADD is phosphorylated at serine residues. We now show that phosphorylation exclusively occurs at serine 194. The phosphorylation of FADD was found to correlate with the cell cycle. In cells arrested at the G2/M boundary with nocodazole, FADD was quantitatively phosphorylated, whereas only nonphosphorylated FADD was found in cells arrested in G1/S with hydroxyurea. In this context, we have identified a 70-kDa cell cycle-regulated kinase that specifically binds to the C-terminal half of FADD. Because CD95-mediated apoptosis is independent of the cell cycle, phosphorylation of FADD may regulate its apoptosis-independent functions.  相似文献   

17.
Cellular FADD-like interleukin-1β–converting enzyme inhibitory proteins (c-FLIPs; isoforms c-FLIP long [c-FLIPL], c-FLIP short [c-FLIPS], and c-FLIP Raji [c-FLIPR]) regulate caspase-8 activation and death receptor (DR)–induced apoptosis. In this study, using a combination of mathematical modeling, imaging, and quantitative Western blots, we present a new mathematical model describing caspase-8 activation in quantitative terms, which highlights the influence of c-FLIP proteins on this process directly at the CD95 death-inducing signaling complex. We quantitatively define how the stoichiometry of c-FLIP proteins determines sensitivity toward CD95-induced apoptosis. We show that c-FLIPL has a proapoptotic role only upon moderate expression in combination with strong receptor stimulation or in the presence of high amounts of one of the short c-FLIP isoforms, c-FLIPS or c-FLIPR. Our findings resolve the present controversial discussion on the function of c-FLIPL as a pro- or antiapoptotic protein in DR-mediated apoptosis and are important for understanding the regulation of CD95-induced apoptosis, where subtle differences in c-FLIP concentrations determine life or death of the cells.  相似文献   

18.
The adaptive immune response is tightly regulated to limit responding cells in an Ag-specific manner. On B cells, coreceptors CD21/CD19 modulate the strength of BCR signals, potentially influencing cell fate. The importance of the CD95 pathway was examined in response of B cells to moderate affinity Ag using an adoptive transfer model of lysozyme-specific Ig transgenic (HEL immunoglobulin transgene (MD4) strain) B cells. Although adoptively transferred Cr2+/+ MD4 B cells are activated and persist within splenic follicles of duck egg lysozyme-immunized mice, Cr2-/- MD4 B cells do not. In contrast, Cr2-/- MD4 lpr B cells persist after transfer, suggesting that lack of CD21/CD35 signaling results in CD95-mediated elimination. Cr2 deficiency did not affect CD95 levels, but cellular FLIP (c-FLIP) protein and mRNA levels were reduced 2-fold compared with levels in Cr2+/+ MD4 B cells. In vitro culture with Cr2+/+ MD4 B cells demonstrated that equimolar amounts of rHEL-C3d3 were more effective than hen egg lysozyme alone in up-regulating c-FLIP levels and for protection against CD95-mediated apoptosis. Collectively, this study implies a mechanism for regulating B cell survival in vivo whereby the strength of BCR signaling (including coreceptor) determines c-FLIP levels and protection from CD95-induced death.  相似文献   

19.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

20.
Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED. [BMB Reports 2014; 47(9): 488-493]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号