首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR), and the deletion of these T cells resulted in less severe disease. We therefore examined the role of Vbeta14(+) T cells in FI-RSV-induced disease. BALB/c mice were immunized with vaccinia virus expressing secreted RSV G (vvGs) or with FI-RSV. At the time of challenge with live RSV, mice were injected with antibody to the Vbeta14 component of the TCR. vvGs-immunized mice treated with anti-Vbeta14 had reduced cytokine levels in the lung. Eosinophil recruitment to the lung was also significantly reduced. In contrast, depletion of Vbeta14(+) T cells in FI-RSV-immunized mice had little impact on cytokine production or pulmonary eosinophilia. An analysis of TCR Vbeta chain usage confirmed a bias toward Vbeta14 expression on CD4(+) T cells from vvGs-immunized mice, whereas the CD4(+) T cells in FI-RSV-immunized mice expressed a diverse array of Vbeta chains. These data show that although FI-RSV and vvGs induce responses resulting in similar immunopathology, the T-cell repertoire mediating the response is different for each immunogen and suggest that the immune responses elicited by RSV G are not the basis for FI-RSV vaccine-enhanced disease.  相似文献   

2.
The attachment glycoprotein G of respiratory syncytial virus (RSV) is produced as both membrane-anchored and secreted forms by infected cells. Immunization with secreted RSV G (Gs) or formalin-inactivated alumprecipitated RSV (FI-RSV) predisposes mice to immune responses involving a Th2 cell phenotype which results in more severe illness and pathology, decreased viral clearance, and increased pulmonary eosinophilia upon subsequent RSV challenge. These responses are associated with increased interleukin-4 (IL-4) production in FI-RSV-primed mice, and the responses are IL-4 dependent. RNase protection assays demonstrated that similar levels of IL-4 mRNA were induced after RSV challenge in mice primed with vaccinia virus expressing Gs (vvGs) or a construct expressing only membrane-anchored G (vvGr). However, upon RSV challenge, vvGs-primed mice produced significantly greater levels of IL-5 and IL-13 mRNA and protein than vvGr-primed mice. Administration of neutralizing anti-IL-4 antibody 11.B11 during vaccinia virus priming did not alter the levels of vvGs-induced IL-5, IL-13, pulmonary eosinophilia, illness, or RSV titers upon RSV challenge, although immunoglobulin G (IgG) isotype profiles revealed that more IgG2a was produced. vvGs-priming of IL-4-deficient mice demonstrated that G-induced airway eosinophilia was not dependent on IL-4. In contrast, airway eosinophilia induced by FI-RSV priming was significantly reduced in IL-4-deficient mice. Thus we conclude that, in contrast to FI-RSV, the secreted form of RSV G can directly induce IL-5 and IL-13, producing pulmonary eosinophilia and enhanced illness in RSV-challenged mice by an IL-4-independent mechanism.  相似文献   

3.
To investigate enhanced disease associated with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine, we studied the pulmonary inflammatory response to RSV in BALB/c mice immunized with live RSV, FI-RSV, or combinations of the two. After RSV challenge, the number of granular cells, the ratio of CD4+/CD8+ lymphocytes, and the level of Th2-like cytokine mRNAs in the bronchoalveolar lavage specimens in mice immunized first with live RSV and then with FI-RSV were lower than that in FI-RSV-immunized mice and close to that in live RSV-immunized mice. These data suggest that prior live RSV infection prevents most of the enhanced inflammatory response seen in FI-RSV-immunized mice and might explain lack of enhanced disease in older FI-RSV-immunized children. A live RSV vaccine might similarly decrease the risk of enhanced disease with non-live RSV vaccines.  相似文献   

4.
Vaccination of children with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine led to exacerbated disease including pulmonary eosinophilia following a natural RSV infection. Immunization of BALB/c mice with FI-RSV or a recombinant vaccinia virus (vv) expressing the RSV attachment (G) protein (vvG) results in a pulmonary Th2 response and eosinophilia after RSV challenge that closely mimics the RSV vaccine-enhanced disease observed in humans. The underlying causes of RSV vaccine-enhanced disease remain poorly understood. We demonstrate here that RSV M2-specific CD8 T cells reduce the Th2-mediated pathology induced by vvG-immunization and RSV challenge in an IFN-gamma-independent manner. We also demonstrate that FI-RSV immunization does not induce a measurable RSV-specific CD8 T cell response and that priming FI-RSV-immunized mice for a potent memory RSV-specific CD8 T cell response abrogates pulmonary eosinophilia after subsequent RSV challenge. Our results suggest that the failure of the FI-RSV vaccine to induce a CD8 T cell response may have contributed to the development of pulmonary eosinophilia and augmented disease that occurred in vaccinated individuals.  相似文献   

5.
BALB/c mice sensitized to vaccinia virus expressed G protein of respiratory syncytial virus (RSV) develop a Th2-type cytokine response and pulmonary eosinophilia when challenged with live RSV. In this study, BALB/c mice were immunized or challenged with an RSV mutant lacking the G and SH proteins or with DNA vaccines coding for RSV G or F protein. F or G protein DNA vaccines were capable of sensitizing for pulmonary eosinophilia. The absence of the G and/or SH protein in the infecting virus resulted in a consistent increase both in pulmonary natural killer cells and in gamma interferon and tumor necrosis factor expression, as well as, with primary infection, a variable increase in neutrophils and CD11b(+) cells. The development of pulmonary eosinophilia in formalin-inactivated RSV-vaccinated mice required the presence of the G and/or SH protein in the challenge virus. These data show that G and/or SH protein has a marked impact on the inflammatory and innate immune response to RSV infection.  相似文献   

6.
Respiratory syncytial virus (RSV) is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV) vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.  相似文献   

7.
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in infants and young children worldwide, but currently no safe and effective vaccine is available. The RSV G glycoprotein (RSVG), a major attachment protein, is an important target for the induction of protective immune responses during RSV infection. However, it has been thought that a CD4+ T cell epitope (a.a. 183–195) within RSVG is associated with pathogenic pulmonary eosinophilia. To develop safe and effective RSV vaccine using RSV G protein core fragment (Gcf), several Gcf variants resulting from modification to CD4+ T cell epitope were constructed. Mice were immunized with each variant Gcf, and the levels of RSV-specific serum IgG were measured. At day 4 post-challenge with RSV subtype A or B, lung viral titers and pulmonary eosinophilia were determined and changes in body weight were monitored. With wild type Gcf derived from RSV A2 (wtAGcf), although RSV A subtype-specific immune responses were induced, vaccine-enhanced disease characterized by excessive pulmonary eosinophil recruitment and body weight loss were evident, whereas wtGcf from RSV B1 (wtBGcf) induced RSV B subtype-specific immune responses without the signs of vaccine-enhanced disease. Mice immunized with Th-mGcf, a fusion protein consisting CD4+ T cell epitope from RSV F (F51–66) conjugated to mGcf that contains alanine substitutions at a.a. position 185 and 188, showed higher levels of RSV-specific IgG response than mice immunized with mGcf. Both wtAGcf and Th-mGcf provided complete protection against RSV A2 and partial protection against RSV B. Importantly, mice immunized with Th-mGcf did not develop vaccine-enhanced disease following RSV challenge. Immunization of Th-mGcf provided protection against RSV infection without the symptom of vaccine-enhanced disease. Our study provides a novel strategy to develop a safe and effective mucosal RSV vaccine by manipulating the CD4+ T cell epitope within RSV G protein.  相似文献   

8.
The respiratory syncytial virus (RSV) G glycoprotein promotes differentiation of type 2 CD4+ T lymphocytes and induces an eosinophilic response in lungs of RSV-infected mice. A unique feature of G is that a second initiation codon in the transmembrane region of the glycoprotein results in secretion of soluble protein from infected cells. Recombinant vaccinia viruses that express wild-type G (vvWT G), only secreted G (vvM48), or only membrane-anchored G (vvM48I) were used to define the influence of G priming on immunopathogenesis. Mice immunized with vvM48 had more severe illness following RSV challenge than did mice primed with vvWT G or vvM48I. Coadministration of purified G during priming with the construct expressing membrane-anchored G shifted immune responses following RSV challenge to a more Th2-like response. This was characterized by increased interleukin-5 in lung supernatants and an increase in G-specific immunoglobulin G1 antibodies. Eosinophils were present in the infiltrate of all mice primed with G-containing vectors but were greatest in mice primed with regimens including secreted G. These data suggest the form of G protein available for initial antigen processing and presentation is an important factor in promoting Th2-like immune responses, including the induction of lung eosinophilia. The ability of RSV to secrete G protein may therefore represent a viral strategy for immunomodulation and be a key determinant of disease pathogenesis.  相似文献   

9.
In previous studies, children immunized with a formalin-inactivated respiratory syncytial virus vaccine (FI-RSV) developed severe pulmonary disease with greater frequency than did controls during subsequent natural RSV infection. In earlier efforts to develop an animal model for this phenomenon, extensive pulmonary histopathology developed in FI-RSV-immunized cotton rats and mice subsequently challenged with RSV. In mice, depletion of CD4+ T cells at the time of RSV challenge completely abrogated this histopathology. Furthermore, the predominant cytokine mRNA present in lungs of FI-RSV-immunized mice during subsequent infection with RSV was that characteristically secreted by Th2 T cells, namely interleukin-4 (IL-4). In the present studies, we sought to determine the relative contributions of gamma interferon (IFN-gamma), IL-2, IL-4, and IL-10 to the lymphocytic infiltration into the lungs observed following RSV challenge of mice previously immunized with FI-RSV. Mice previously immunized with FI-RSV or infected with RSV were depleted of IFN-gamma, IL-2, IL-4, or IL-10 immediately before RSV challenge, and the magnitude of inflammatory cell infiltration around bronchioles and pulmonary blood vessels was quantified. The phenomenon of pulmonary-histopathology potentiation by FI-RSV was reproduced in the present study, thereby allowing us to investigate the effect of cytokine depletion on the process. Simultaneous depletion of both IL-4 and IL-10 completely abrogated pulmonary histopathology in FI-RSV-immunized mice. Depletion of IL-4 alone significantly reduced bronchiolar, though not perivascular, histopathology. Depletion of IL-10 alone had no effect. Depletion of IFN-gamma, IL-2, or both together had no effect on the observed histopathology. These data indicate that FI-RSV immunization primes for a Th2-, IL-4-, and IL-10-dependent inflammatory response to subsequent RSV infection. It is possible that this process played a role in enhanced disease observed in infants and children immunized with FI-RSV.  相似文献   

10.
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.  相似文献   

11.
In previous studies, it was observed that children immunized with a formalin-inactivated respiratory syncytial virus vaccine (FI-RSV) developed severe pulmonary disease with greater frequency during subsequent natural RSV infection than did controls. During earlier efforts to develop an animal model of this phenomenon, enhanced pulmonary histopathology was observed after intranasal RSV challenge of FI-RSV-immunized cotton rats. Progress in understanding the immunologic basis for these observations has been hampered by the lack of reagents useful in manipulating the immune response of the cotton rat. This problem prompted us to reinvestigate the characteristics of immunity to RSV in the mouse. In the present studies, extensive pulmonary histopathology was observed in FI-RSV-immunized or RSV-infected BALB/c mice upon RSV challenge, and studies to determine the relative contributions of CD4+ or CD8+ T cells to this process were undertaken. Mice previously immunized with FI-RSV or infected with RSV were depleted of CD4+, CD8+, or both T-cell subsets immediately prior to RSV challenge, and the magnitude of inflammatory cell infiltration around bronchioles and pulmonary blood vessels and into alveolar spaces was quantified. The magnitude of infiltration at each anatomic site in previously FI-RSV-immunized or RSV-infected, nondepleted animals was similar, indicating that this is not a relevant model for enhanced disease. However, the effect of T-cell subset depletion on pulmonary histopathology following RSV challenge was very different between the two groups. Depletion of CD4+ T cells completely abrogated pulmonary histopathology in FI-RSV-immunized mice, whereas it had a much smaller effect on mice previously infected with RSV. FI-RSV-immunized or RSV-infected animals depleted of CD8+ T cells had only a modest reduction of pulmonary histopathology. In addition, RSV infection induced high levels of major histocompatibility complex class I-restricted cytotoxic T-cell activity, whereas FI-RSV immunization induced a low level. These data indicate that immunization with FI-RSV induces a cellular immune response different from that induced by RSV infection, which likely played a role in enhanced disease observed in infants and children.  相似文献   

12.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

13.
Vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine or RSV G glycoprotein results in enhanced pulmonary disease after live RSV infection. Enhanced pulmonary disease is characterized by pulmonary eosinophilia and is associated with a substantial inflammatory response. We show that the absence of the G glycoprotein or G glycoprotein CX3C motif during FI-RSV vaccination or RSV challenge of FI-RSV-vaccinated mice, or treatment with anti-substance P or anti-CX3CR1 antibodies, reduces or eliminates enhanced pulmonary disease, modifies T-cell receptor Vbeta usage, and alters CC and CXC chemokine expression. These data suggest that the G glycoprotein, and in particular the G glycoprotein CX3C motif, is key in the enhanced inflammatory response to FI-RSV vaccination, possibly through the induction of substance P.  相似文献   

14.
Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. RSV vaccine development has been hampered by results of clinical trials in the 1960s, when formalin-inactivated whole-RSV preparations adjuvated with alum (FI-RSV) were found to predispose infants for enhanced disease following subsequent natural RSV infection. We have reproduced this apparently immunopathological phenomenon in infant cynomolgus macaques and identified immunological and pathological correlates. Vaccination with FI-RSV induced specific virus-neutralizing antibody responses accompanied by strong lymphoproliferative responses. The vaccine-induced RSV-specific T cells predominantly produced the Th2 cytokines interleukin-13 (IL-13) and IL-5. Intratracheal challenge with a macaque-adapted wild-type RSV 3 months after the third vaccination elicited a hypersensitivity response associated with lung eosinophilia. The challenge resulted in a rapid boosting of IL-13-producing T cells in the FI-RSV-vaccinated animals but not in the FI-measles virus-vaccinated control animals. Two out of seven FI-RSV-vaccinated animals died 12 days after RSV challenge with pulmonary hyperinflation. Surprisingly, the lungs of these two animals did not show overt inflammatory lesions. However, upon vaccination the animals had shown the strongest lymphoproliferative responses associated with the most pronounced Th2 phenotype within their group. We hypothesize that an IL-13-associated asthma-like mechanism resulted in airway hyperreactivity in these animals. This nonhuman primate model will be an important tool to assess the safety of nonreplicating candidate RSV vaccines.  相似文献   

15.
16.
In BALB/c mice, sensitization to respiratory syncytial virus (RSV) attachment (G) glycoprotein leads to the development of lung eosinophilia upon challenge infection with RSV, a pathology indicative of a strong in vivo induction of a Th-2-type response. In this study, we found that a strong, RSV G-specific, Th-1-type cytokine response occurred simultaneously with a Th-2-type response in G-primed mice after RSV challenge. Both Th-1 and Th-2 effector CD4(+) T cells recognized a single immunodominant site on this protein, implying that the differentiation of memory CD4(+) T cells along the Th-1 or Th-2 effector pathway was independent of the epitope specificity of the T cells. A similar observation was made in G-primed H-2(b) haplotype mice after RSV challenge, further suggesting that this process is not dependent on the peptide epitope presented. On the other hand, genes mapping to loci outside of the major histocompatibility complex region are crucial regulators of the development of a Th-2-type response and lung eosinophilia. The implication of these findings for the immune mechanisms underlying the pathogenesis of RSV is discussed.  相似文献   

17.
Bronchiolitis caused by respiratory syncytial virus (RSV) infection is a major cause of hospitalization in children under 1 year of age. RSV causes common colds in older children and adults, but can cause serious disease in immunodeficient patients and the elderly. Development of effective vaccines and treatments for RSV infection is therefore a priority. Because bronchiolitis and vaccine-augmented disease are thought to be caused by exuberant T cell activation, attention has focused on the use of immunomodulators that affect T cell responses. In mice, IL-12 treatment down-regulates type 2 cytokine responses to the attachment protein G of RSV, reducing lung eosinophilia but further enhancing illness. We now show that CD8(+) T cells are responsible for enhanced weight loss, whereas IL-12-activated NK cells express high levels of IFN-gamma and inhibit lung eosinophilia without causing illness. Moreover, unlike immunocompetent mice, virus is detected in the mediastinal lymph nodes after elimination of both CD8(+) T cells and NK cells. These studies show that innate immune responses to viral infections direct the pattern of subsequent specific immunity and are critical to the development of nonpathogenic antiviral effects. We speculate that IL-12 treatment might be beneficial and safe in T cell-deficient patients with RSV pneumonitis.  相似文献   

18.
Vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) caused excessive disease in infants upon subsequent natural infection with RSV. Recent studies with BALB/c mice have suggested that T cells are important contributors to lung immunopathology during RSV infection. In this study, we investigated vaccine-induced enhanced disease by immunizing BALB/c mice with live RSV intranasally or with FI-RSV intramuscularly. The mice were challenged with RSV 6 weeks later, and the pulmonary inflammatory response was studied by analyzing cells obtained by bronchoalveolar lavage 4 and 8 days after challenge. FI-RSV-immunized mice had an increased number of total cells, granulocytes, eosinophils, and CD4+ cells but a decreased number of CD8+ cells. The immunized mice also had a marked increase in the expression of mRNA for the Th2-type cytokines interleukin-5 (IL-5) and IL-13 as well as some increase in the expression of IL-10 (a Th2-type cytokine) mRNA and some decrease in the expression of IL-12 (a Th1-type cytokine) mRNA. The clear difference in the pulmonary inflammatory response to RSV between FI-RSV- and live-RSV-immunized mice suggests that this model can be used to evaluate the disease-enhancing potential of candidate RSV vaccines and better understand enhanced disease.  相似文献   

19.
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells.  相似文献   

20.
The ability of recombinant vaccinia viruses that separately encoded 9 of the 10 known respiratory syncytial virus (RSV) proteins to induce resistance to RSV challenge was studied in BALB/c mice. Resistance was examined at two intervals following vaccination to examine early (day 9) as well as late (day 28) immunity. BALB/c mice were inoculated simultaneously by the intranasal and intraperitoneal routes with a recombinant vaccinia virus encoding one of the following RSV proteins: F, G, N, P, SH, M, 1B, 1C, or M2 (22K). A parainfluenza virus type 3 HN protein recombinant (Vac-HN) served as a negative control. One half of the mice were challenged with RSV intranasally on day 9, and the remaining animals were challenged on day 28 postvaccination. Mice previously immunized by infection with RSV, Vac-F, or Vac-G were completely or almost completely resistant to RSV challenge on both days. In contrast, immunization with Vac-HN, -P, -SH, -M, -1B, or -1C did not induce detectable resistance to RSV challenge. Mice previously infected with Vac-M2 or Vac-N exhibited significant but not complete resistance on day 9. However, in both cases resistance had largely waned by day 28 and was detectable only in mice immunized with Vac-M2. These results demonstrate that F and G proteins expressed by recombinant vaccinia viruses are the most effective RSV protective antigens. This study also suggests that RSV vaccines need only contain the F and G glycoproteins, because the immunity conferred by the other proteins is less effective and appears to wane rapidly with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号