首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5Ralpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5Ralpha (hIL-5Ralpha) and mouse IL-5Ralpha (mIL-5Ralpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5Ralpha but not the mIL-5Ralpha. By using chimeras of the mIL-5Ralpha and hIL-5Ralpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5Ralpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5Ralpha to mIL-5Ralpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity. These results show that regions of the third FnIII domain of IL-5Ralpha are involved in binding, in addition to the regions in domains one and two of the IL-5Ralpha that were identified in an earlier study.  相似文献   

2.
Chen D  Nicholas J 《Journal of virology》2006,80(19):9811-9821
Human herpesvirus 8 interleukin-6 (vIL-6) displays 25% amino acid identity with human IL-6 (hIL-6) and shares an overall four-helix-bundle structure and gp130-mediated STAT/mitogen-activated protein kinase signaling with its cellular counterpart. However, vIL-6 is distinct in that it can signal through gp130 alone, in the absence of the nonsignaling gp80 alpha-subunit of the IL-6 receptor. To investigate the structural requirements for gp80 independence of vIL-6, a series of expression vectors encoding vIL-6/hIL-6 chimeric and site-mutated IL-6 proteins was generated. The replacement of hIL-6 residues with three vIL-6-specific tryptophans implicated in gp80 independence from crystallographic studies or the A and C helices containing these residues did not confer gp80 independence to hIL-6. The N- and C-terminal regions of vIL-6 could be substituted with hIL-6 sequences with the retention of gp80-independent signaling, but substitutions of other regions of vIL-6 (helix A, A/B loop, helix B, helix C, and proximal half of helix D) with equivalent sequences of hIL-6 abolished gp80 independence. Interestingly, the B helix of vIL-6 was absolutely required for gp80 independence, despite the fact that this region contains no receptor-binding residues. Point mutational analysis of helix C, which contains residues involved in physical and functional interactions with gp130 domains 2 and 3 (cytokine-binding homology region), identified a variant, VI120EE, that was able to signal and dimerize gp130 only in the presence of gp80. gp80 was also found to stabilize gp130:g130 dimers induced by a distal D helix variant of vIL-6 that was nonetheless able to signal independently of gp80. Together, our data reveal the crucial importance of overall vIL-6 structure and conformation for gp80-independent signaling and provide functional and physical evidence of the stabilization of vIL-6-induced gp130 signaling complexes by gp80.  相似文献   

3.
Internal deletions in human interleukin-6: structure-function analysis   总被引:1,自引:0,他引:1  
By cDNA mutagenesis, we have constructed internal and C-terminal deletions (delta 21-51, delta 52-97, delta 97-104, delta 127-174, delta 97-184 and delta 134-184) in human interleukin-6 (hIL-6). All those deletion-carrying hIL-6 (delta hIL-6) proteins were then produced in Xenopus laevis oocytes and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results show that, at least in frog oocytes, the first potential N-glycosylation site (Asn45) is utilized exclusively. The IL-6 conformation of these deletion-carrying proteins has been studied by immunoprecipitation with two kinds of monoclonal antibodies (mAb's): mAb's that show preference towards denatured hIL-6, or conformation-specific mAb's. The binding pattern of these two series of mAb's indicated that the IL-6 conformation has been largely destroyed for four of our delta-proteins. Proteins delta 21-51 and delta 127-174 have kept a part of the IL-6 tertiary structure since they are still recognized by some conformation-specific mAb's. All of these delta hIL-6 proteins were inactive in the IL-6 hybridoma growth factor (HGF) assay and unable to inhibit the HGF activity of the recombinant human wild-type IL-6 (wt hIL-6). Moreover, the oocyte-synthesized delta hIL-6 (delta 21-51, delta 127-174, delta 97-184, delta 134-184) did not bind to the IL-6 receptor. Finally, we have produced two proteins with aa 29-33 or 97-104 substituted by corresponding murine IL-6 (mIL-6) sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The intense innate immunological activities occurring at the enteric mucosal surface involve interactions between intestinal epithelial cells and immune cells. Our previous studies have indicated that Peyer's patch lymphocytes may modulate intestinal epithelial barrier and ion transport function in homeostasis and host defense via cell-cell contact as well as cytokine signaling. The present study was undertaken using the established co-culture system of Caco-2 epithelial cells with lymphocytes of Peyer's patch to investigate the expression of IL-8 and IL-6 cytokines and cytokine receptors in the co-culture system after challenge with Shigella F2a-12 lipopolysaccharide (LPS). The human colonic epithelial cell line Caco-2 was co-cultured with freshly isolated lymphocytes from the murine Peyer's patch either in the mixed or separated (isolated but permeable compartments) co-culture configuration, and was challenged with Shigella F2a-12 LPS for 8 h. The level of mRNA expressions of human interleukin-8 (hIL-8), human interleukin-8 receptor (hIL-8R), mouse interleukin-8 receptor (mIL-8R), mouse interleukin-6 (mIL-6), mouse interleukin-6 receptor (mIL-6R) and human interleukin-6 receptor (hIL-6R) was examined by semi-quantitative PCR. In both co-culture groups, hIL-8 expression of Caco-2 cells was decreased, and hIL-8R expression was increased compared to the Caco-2 alone group. Upon LPS challenge, hIL-8 expression from the Caco-2 cells of both co-culture groups was higher than in the Caco-2 control group. The increased hIL-8 expression of Caco-2 cells in the separated co-culture group is correlated with a decreased hIL-8R expression and an increased mIL-8R expression. In the mixed co-culture group, the increased expression of hIL-8 was associated with the upregulated hIL-8R expression on Caco-2 cells and downregulated mIL-8R on murine Peyer's patch lymphocytes (PPL). mIL-6 expression from mouse PPL was also upregulated by LPS in mixed co-culture. However, upon the treatment with LPS, hIL-6R expression of Caco-2 cells was decreased in the mixed co-culture, but increased in separated co-culture. The data suggest that release of hIL-8 from epithelial cells may act on lymphocytes through a paracrine pathway, but it may also act on the epithelial cells themselves via an autocrine pathway. The data also suggest that the release of mIL-6 from Peyer's patch lymphocytes affects epithelial cells in a paracrine fashion.  相似文献   

5.
Interleukin-6 (IL-6) triggers the formation of a high affinity receptor complex with the ligand binding subunit IL-6Ralpha and the signal transducing chain gp130. Since the intracytoplasmic region of the IL-6Ralpha does not contribute to signaling, soluble forms of the extracytoplasmic domain (sIL-6Ralpha), potentiate IL-6 bioactivity and induce a cytokine-responsive status in cells expressing gp130 only. This observation, together with the detection of high levels of circulating soluble human IL-6Ralpha (shIL-6Ralpha) in sera, suggests that the hIL-6-shIL-6Ralpha complex is an alternative form of the cytokine. Here we describe the generation of human IL-6 (hIL-6) variants with strongly enhanced shIL-6Ralpha binding activity and bioactivity. Homology modeling and site-directed mutagenesis of hIL-6 suggested that the binding interface for hIL-6Ralpha is constituted by the C-terminal portion of the D-helix and residues contained in the AB loop. Four libraries of hIL-6 mutants were generated by each time fully randomizing four different amino acids in the predicted AB loop. These libraries were displayed monovalently on filamentous phage surface and sorted separately for binding to immobilized shIL-6Ralpha. Mutants were selected which, when expressed as soluble proteins, showed a 10- to 40-fold improvement in shIL-6Ralpha binding; a further increase (up to 70-fold) was achieved by combining variants isolated from different libraries. Interestingly, high affinity hIL-6 variants show strongly enhanced bioactivity on cells expressing gp13O in the presence of shIL-6Ralpha at concentrations similar to those normally found in human sera.  相似文献   

6.
Interleukin-5 (IL-5) is a key mediator of eosinophilic inflammation. The biological role of this cytokine in an allergic airway inflammatory response has been widely demonstrated in guinea pigs, yet the interaction of guinea pig IL-5 (gpIL-5) with its receptor has not been studied. Experiments were performed to quantitate the interaction of gpIL-5 with gpIL-5r and to compare this affinity with that of hIL-5 and mIL-5 and their cognate receptors. The cross-species affinity and agonist efficacy were evaluated to see if gpIL-5r had a restricted species reactivity (as is the case with mIL-5r) or did not distinguish between IL-5 orthologs (similar to hIL-5r). gpIL-5 was cloned using mRNA isolated from cells obtained by bronchoalveolar lavage. Recombinant gpIL-5 was expressed in T. ni insect cells and purified from spent media. Binding assays were performed using insect cells expressing hIL-5ralphabeta or gpIL-5ralphabeta1 as previously described (Cytokine, 12:858-866, 2000) or using B13 cells which express mIL-5r. The agonist potency and efficacy properties of each IL-5 ortholog were evaluated by quantitating the proliferative response of human TF-1 cells and murine B13 cells. gpIL-5 bound with high affinity to recombinant gpIL-5r as demonstrated by displacing [125I]hIL-5 (Ki = 160 pM). gpIL-5 also bound to hIL-5r with high affinity (Ki = 750 pM). hIL-5 and mIL-5 showed similar, high-affinity binding profiles to both gpIL-5r and hIL-5r. In contrast, gpIL-5 and hIL-5 did not bind to the mIL-5r as demonstrated by an inability to displace [125I]mIL-5, even at 1000-fold molar excess. These differences in affinity for IL-5r orthologs correlated with bioassay results: human TF-1 cells showed roughly comparable proliferative responses to guinea pig, human and murine IL-5 whereas murine B13 cells showed a strong preference for murine over guinea pig and human IL-5 (EC50 = 1.9, 2200 and 720 pM, respectively). Recombinant gpIL-5 binds to the gpIL-5r with high affinity, similar to that seen with the human ligand-receptor pair. gpIL-5r and hIL-5r do not distinguish between the three IL-5 orthologs whereas mIL-5r has restricted specificity for its cognate ligand.  相似文献   

7.
Feng J  Li Y  Shen B 《Peptides》2004,25(7):1123-1131
The interaction between human interleukin-6 (hIL-6) and human interleukin-6 receptor (hIL-6R) is the initial and most specific step in the hIL-6 signaling pathway. Understanding its binding core and interaction mechanism at amino acid level is the basis for designing small IL-6 inhibiting molecules, such as peptides or lead compounds. With Docking method, the complex structure composed of hIL-6 and its alpha-subunit receptor (hIL-6R) was analyzed theoretically. By using structure-based analysis and phage display methods, the loop AB (from Lys67 to Glu81) of hIL-6 was found to be the important binding epitope of hIL-6R. By means of computer-aided design, the mimic antagonist peptide (14 residues) was designed and synthesized. Using multiple myeloma cell line (XG7), IL-6 dependent cell line, as test model, the influence of antagonist peptides on the proliferation of XG7 cells was investigated. The results showed that the synthetic peptide could be competitive to bind to hIL-6R with hIL-6, and the effect was concentration dependent. The theoretical design approach is a powerful alternative to phage peptide library for protein mimics. Such mini-peptide is more amenable to synthetic chemistry and thus may be useful starting points for the design of small organic mimics.  相似文献   

8.
The high affinity receptor for interleukin-2 (IL-2) contains three subunits called IL-2R alpha, beta and gamma. A biological and receptor binding analysis based on 1393 different mutant mouse IL-2 (mIL-2) proteins was used to define the function of each of the 149 residues. By this genetic analysis, 44 residues were assigned important functions, 21 of which were structural. The remaining 23 residues consisted of 19 residues, from three separate regions, that were important for IL-2R alpha interaction; three residues, from two separate regions, that were important for IL-2R beta interaction; and a single residue important for IL-2R gamma interaction. We built a model mIL-2 structure based on the homologous human IL-2 (hIL-2) crystal structure. The roles of the 21 residues presumed to be important for structure were consistent with the model. Despite discontinuity in the primary sequence, the residues specific for each IL-2R subunit interaction were clustered and located to three disparate regions of the tertiary mIL-2 structure. The relative spatial locations of these three surfaces are different from the two receptor binding sites known for the structurally related human growth hormone and the significance of this observation is discussed.  相似文献   

9.
Using a combination of theoretical sequence structure recognition predictions and experimental disulfide bond assignments, a three-dimensional (3D) model of human interleukin-7 (hIL-7) was constructed that predicts atypical surface chemistry in helix D that is important for receptor activation. A 3D model of hIL-7 was built using the X-ray crystal structure of interleukin-4 (IL-4) as a template (Walter MR et al., 1992, J Mol Biol. 224:1075-1085; Walter MR et al., 1992, J Biol Chem 267:20371-20376). Core secondary structures were constructed from sequences of hIL-7 predicted to form helices. The model was constructed by superimposing IL-7 helices onto the IL-4 template and connecting them together in an up-up down-down topology. The model was finished by incorporating the disulfide bond assignments (Cys3, Cys142), (Cys35, Cys130), and (Cys48, Cys93), which were determined by MALDI mass spectroscopy and site-directed mutagenesis (Cosenza L, Sweeney E, Murphy JR, 1997, J Biol Chem 272:32995-33000). Quality analysis of the hIL-7 model identified poor structural features in the carboxyl terminus that, when further studied using hydrophobic moment analysis, detected an atypical structural property in helix D, which contains Cys 130 and Cys142. This analysis demonstrated that helix D had a hydrophobic surface exposed to bulk solvent that accounted for the poor quality of the model, but was suggestive of a region in IL-7 that maybe important for protein interactions. Alanine (Ala) substitution scanning mutagenesis was performed to test if the predicted atypical surface chemistry of helix D in the hIL-7 model is important for receptor activation. This analysis resulted in the construction, purification, and characterization of four hIL-7 variants, hIL-7(K121A), hIL-7(L136A), hIL-7(K140A), and hIL-7(W143A), that displayed reduced or abrogated ability to stimulate a murine IL-7 dependent pre-B cell proliferation. The mutant hIL-7(W143A), which is biologically inactive and displaces [125I]-hIL-7, is the first reported IL-7R system antagonist.  相似文献   

10.
The receptor for interleukin-5 (IL-5) is composed of two different subunits. The IL-5 receptor alpha (IL-5R alpha) is required for ligand-specific binding while association with the beta-chain results in increased binding affinity. Murine IL-5 (mIL-5) has similar activity on human and murine cells, whereas human IL-5 (hIL-5) has marginal activity on murine cells. We found that the combined substitution of K84 and N108 on hIL-5 by their respective murine counterpart yields a molecule which is as potent as mIL-5 for growth stimulation of a murine cell line. Since the unidirectional species specificity is due only to the interaction with the IL-5R alpha subunit, we have used chimeric IL-5R alpha molecules to define regions of hIL-5R alpha involved in species-specific hIL-5 ligand binding. We found that this property is largely determined by the NH2-terminal module of hIL-5R alpha, and detailed analysis defined D56 and to a lesser extent E58 as important for binding. Moreover, two additional residues, D55 and Y57, were identified by alanine scanning mutagenesis within the same region. Based on the observed homology between the NH2-terminal module and the membrane proximal (WSXWS-containing) module of hIL-5R alpha we located this stretch of four amino acid residues (D55, D56, Y57 and E58) in the loop region that connects the C and D beta-strands on the proposed tertiary structure of the NH2-terminal module.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two murine interleukin-6 (mIL-6) variants were constructed using the polymerase chain reaction (PCR), one lacking the last five residues (183-187) at the C-terminus (pMC5) and another with the last five residues of mIL-6 substituted by the corresponding residues of human IL-6 (pMC5H). The growth stimulatory activity of pMC5 on the mouse hybridoma cell line 7TD1 was < 0.05% of mIL-6, whereas pMC5H and mIL-6 were equipotent. The loss of biological activity of pMC5 correlated with its negligible receptor binding affinity on 7TD1 cells, while the binding of pMC5H was comparable to that of mIL-6. Both pMC5 and pMC5H, like mIL-6, failed to interact with recombinant soluble human IL-6 receptor when assayed by surface plasmon resonance-based biosensor analysis. These studies suggest that the C-terminal seven amino acids of human IL-6, alone, do not define species specificity for receptor binding. A variety of biophysical techniques, as well as the binding of a conformational-specific monoclonal antibody, indicated that the global fold of the mIL-6 variants was similar to that of mIL-6, although small changes in the NMR spectra, particularly for pMC5, were observed. Some of these changes involved residues widely separated in the primary structure. For instance, interactions involving Tyr-22 were influenced by the C-terminal amino acids suggesting that the N- and C-termini of mIL-6 are in close proximity. Equilibrium unfolding experiments indicated that pMC5 was 0.8 kcal/mol less stable than mIL-6, whereas pMC5H was 1.4 kcal/mol more stable. These studies emphasize the structural importance of the C-terminal amino acids of IL-6 and suggest that truncation or mutation of this region could lead to small but significant alterations in other regions of the molecule.  相似文献   

12.
The topography of the colicin E1 immunity (Imm) protein was determined from the positions of TnphoA and complementary lacZ fusions relative to the three long hydrophobic segments of the protein and site-directed substitution of charged for nonpolar residues in the proposed membrane-spanning segments. Inactivation of the Imm protein function required substitution and insertion of two such charges. It was concluded that the 113-residue colicin E1 Imm protein folds in the membrane as three trans-membrane alpha-helices, with the NH2 and COOH termini on the cytoplasmic and periplasmic sides of the membrane, respectively. The approximate spans of the three helices are Asn-9 to Ser-28, Ile-43 to Phe-62, and Leu-84 to Leu-104. An extrinsic highly charged segment, Lys-66 to Lys-74, containing seven charges in nine residues, extends into the cytoplasmic domain. The specificity of the colicin E1 Imm protein for interaction with the translocation apparatus and the colicin E1 ion channel is proposed to reside in its peripheral segments exposed on the surface of the inner membrane. These regions include the highly charged segment Lys-66 to Lys-83 (loop 2) and the short (approximately eight-residue) NH2 terminus on the cytoplasmic side, and Glu-29 to Val-44 (loop 1) and the COOH-terminal segment Gly-105 to Asn-113 on the periplasmic side.  相似文献   

13.
The structure of the chicken smooth muscle myosin light chain kinase pseudosubstrate sequence MLCK(774–807)amide was studied using two-dimensional proton NMR spectroscopy. Resonance assignments were made with the aid of totally correlated and nuclear Overhauser effect spectroscopy. A distance geometry algorithm was used to process the body of NMR distance and angle data and the resulting family of structures was further refined using dynamic simulated annealing. The major structural features determined include two helical segments extending from Asp-777 to Lys-785 and from Arg-790/Met-791 to Trp-800 connected by a turn region from Leu-786 to Asp-789 enabling the helices to interact in solution. The C-terminal helix incorporates the bulk of the pseudosubstrate recognition site which is partially overlapped by the calmodulin binding site while the N-terminal helix forms the bulk of the connecting peptide. The demonstrated turn between the helices may assist in enabling the autoregulatory or pseudosubstrate recognition sequence to be rotated out of the active site of the catalytic core following calmodulin binding.  相似文献   

14.
The constitutive androstane receptor (CAR) is an interesting member of the nuclear receptor superfamily because of its exceptionally high constitutive activity due to ligand-independent interaction of the ligand-binding domain with co-activator proteins. This study compares the agonist-dependent and agonist-independent activities of human CAR with those of mouse CAR and the vitamin D receptor and demonstrates that the constitutive activity of CAR is mediated by at least three contacts between the amino acids of helix 12, partner amino acids in helices 4 and 11, and a charge clamp between helices 12 and 3. The stabilization of helix 12 by a contact between its C terminus and the lysine of helix 4 has the same impact in human and mouse CARs. In addition, the charge clamp between the glutamate in helix 12 and the lysine in helix 3 is also important for the constitutive activity of both receptor orthologs but less critical for the agonist-dependent stabilization of their respective helices 12. Interestingly, Cys-357 in mouse CAR has significantly more impact on the stabilization of helix 12 than does the orthologous position Cys-347 in human CAR. This deficit appears to be compensated by a more dominant role of Ile-330 in human CAR over Leu-340 in mouse CAR because it is more efficient than Cys-347 in controlling the flexibility of helix 12 in the presence of an agonist. The constitutive activity of other members of the nuclear receptor superfamily could be explained by a homologous hydrophobic interaction between large, non-polar amino acids of helices 11 and 12.  相似文献   

15.
16.
Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins.  相似文献   

17.
The effect of human interleukin-4 (hIL-4) on mineralization in human osteoblast-like cells was investigated. Confluent cells were incubated with hIL-4 for 16 or 30 days in the presence or absence, respectively, of alpha-glycerophosphate (alpha-GP), which accelerates the mineralization process. hIL-4 (0.3 ng/ml) induced mineralization with 1.9-, 26- and 37-fold increases of hydroxyproline, calcium, and osteocalcin content, respectively, in the presence of alpha-GP. Mineralization was not induced with other cytokines, hIL-1, hIL-2, hIL-6, or mIL-4. hIL-4 also induced mineralization in the absence of alpha-GP in a manner different from that of 1 alpha, 25(OH)2 vitaminD3 (1,25(OH)2VD3). These findings suggest that IL-4 may play an important role in bone formation.  相似文献   

18.
The lactose permease of Escherichia coli was expressed in two fragments (split permease), each with a Cys residue, and cross-linking was studied. Split permease with a discontinuity in either loop II/III (N2C10permease) or loop VI/VII (N6C6permease) was used. Proximity of multiple pairs of Cys residues in helices I and XI or XII was examined by using three homobifunctional thiol-specific cross-linking reagents of different lengths and flexibilities (6 A, rigid; 10 A, rigid; 16 A, flexible) or iodine. Cys residues in the periplasmic half of helix I cross-link to Cys residues in the periplasmic half of helix XI. In contrast, no cross-linking is evident with paired Cys residues near the cytoplasmic ends of helices I and XI. Therefore, the periplasmic halves of helices I and XI are in close proximity, and the helices tilt away from each other towards the cytoplasmic face of the membrane. Cross-linking is also found with paired Cys residues near the middle of helices I and XII, but not with paired Cys residues near either end of the helices. Thus, helices I and XII are in close proximity only in the approximate middle of the membrane. Based on the findings, a modified helix packing model is proposed.  相似文献   

19.
T Tsuji  E T Kaiser 《Proteins》1991,9(1):12-22
A series of 37-residue analogues of the pseudo-EF hand in bovine calbindin D9K has been synthesized by the solid phase method. In the presence of calcium an alpha-helical induction of up to 44% was observed for the peptide with the native sequence with a Kd for calcium binding of 0.35 mM. A number of amino acid substitutions have been carried out to study the packing of the two alpha-helices based on the crystal structure of the entire protein. Three strategies were employed: (1) replacement of the Leu residues, which in the crystal structure do not contribute to the hydrophobic interaction between the two helices, by Gln or Ala in order to control the orientation of the helix packing, (2) stabilization of the individual helix by introducing a Glu-...Lys+ salt bridge or by changing the N-terminal charge to compensate for the helix dipole moment, and (3) introduction of a disulfide bond between the two helices to help the packing of the helices. The mutants with the substitution of (Leu-30, Leu-32) to (Gln-30, Gln-32), (Gln-30, Ala-32), and (Ala-30,Ala-32) designed based on the strategy 1 do not show any affinity for calcium and have low alpha-helicity. The Leu-30 to Lys-30 mutant designed to form a salt bridge between the side chains of Glu-26 and Lys-30 has an apparent Kd for calcium of 6.8 mM. Kd of the N-terminal acetylated and succinylated mutants are 0.41 and 0.45 mM, respectively, and no increase in the alpha-helix content relative to that of the natural sequence peptide is observed. The disulfide containing mutants, namely Tyr-13, Leu-31 to Cys-13, Cys-31 and Tyr-13, Leu-31 to Cys-13, hCys-31, show apparent Kd values of 0.93 and 2.1 mM, respectively. The former mutant shows the highest alpha-helix content among the peptides studied in the presence and absence of calcium. While it is difficult to construct an isolated and rigid helix-loop-helix motif with peptides of this size, introduction of a disulfide bond proved to be effective for this purpose.  相似文献   

20.
By using functional lactose permease devoid of native Cys residues with a discontinuity in the periplasmic loop between helices VII and VIII (N(7)/C(5) split permease), cross-linking between engineered paired Cys residues in helices VII and X was studied with the homobifunctional, thiol-specific cross-linkers 1,1-methanediyl bismethanethiosulfonate (3 A), N,N'-o- phenylenedimaleimide (6 A) and N,N'-p-phenylenedimaleimide (10 A). Mutant Asp240-->Cys (helix VII)/Lys319-->Cys (helix X) cross-links most efficiently with the 3 A reagent, providing direct support for studies indicating that Asp240 and Lys319 are in close proximity and charge paired. Furthermore, cross-linking the two positions inactivates the protein. Other Cys residues more disposed towards the middle of helix VII cross-link to Cys residues in the approximate middle of helix X, while no cross-linking is evident with paired Cys residues at the periplasmic or cytoplasmic ends of these helices. Thus, helices VII and X are in close proximity in the middle of the membrane. In the presence of ligand, the distance between Cys residues at positions 240 (helice VII) and 319 (helix X) increases. In contrast, the distance between paired Cys residues more disposed towards the cytoplasmic face of the membrane decreases in a manner suggesting that ligand binding induces a scissors-like movement between the two helices. The results are consistent with a recently proposed mechanism for lactose/H(+) symport in which substrate binding induces a conformational change between helices VII and X, during transfer of H(+) from His322 (helix X)/Glu269 (helix VIII) to Glu325 (helix X).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号