首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release of cytochrome c from inside lipid vesicles and from inside proteoliposomes formed by cytochrome c oxidase has been studied by spectrophotometric methods. The protein encapsulated inside vesicles did not form complex with sodium azide solution added externally. Both hydrogen peroxide and superoxide were found to cause release of cytochrome c from the lipid encapsulated protein, which was detected from the distinct spectral changes due to the formation of the azide complex of cytochrome c in the solution. Cytochrome c encapsulated inside proteoliposomes containing cytochrome c oxidase (CcO) did not release the cytochrome c during enzymatic turnover of CcO. The anticancer drug, doxorubicin, was found to inhibit the biochemical function of cytochrome c oxidase and release of cytochrome c was observed from the proteoliposome encapsulating the protein during the enzymatic turnover in the presence of doxorubicin. The results indicated that the inhibition of enzymatic activity by doxorubicin possibly leads to the formation of reactive oxygen species, which induce the release of cytochrome c from inside to outside of the membrane.  相似文献   

2.
Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.  相似文献   

3.
We have investigated the relationship between function and molecular dynamics of both the lipid and the Ca-ATPase protein in sarcoplasmic reticulum (SR), using temperature as a means of altering both activity and rotational dynamics. Conventional and saturation-transfer electron paramagnetic resonance (EPR) was used to probe rotational motions of spin-labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase sulfhydryl groups in SR. EPR studies were also performed on aqueous dispersions of extracted SR lipids, in order to study intrinsic lipid properties independent of the protein. While an Arrhenius plot of the Ca-ATPase activity exhibits a clear change in slope at 20 degrees C, Arrhenius plots of lipid hydrocarbon chain mobility are linear, indicating that an abrupt thermotropic change in the lipid hydrocarbon phase is not responsible for the Arrhenius break in enzymatic activity. The presence of protein was found to decrease the average hydrocarbon chain mobility, but linear Arrhenius plots were observed both in the intact SR and in extracted lipids. Lipid EPR spectra were analyzed by procedures that prevent the production of artifactual breaks in the Arrhenius plots. Similarly, using sample preparations and spectral analysis methods that minimize the temperature-dependent contribution of local probe mobility to the spectra of spin-labeled Ca-ATPase, we find that Arrhenius plots of overall protein rotational mobility also exhibit no change in slope. The activation energy for protein mobility is the same as that of ATPase activity above 20 degrees C; we discuss the possibility that overall protein mobility may be essential to the rate-limiting step above 20 degrees C.  相似文献   

4.
The lipid isolated from the fat globule membrane of milk was quickly autoxidized. The development of off-flavor like fishy flavor and brown color took place simultaneously. The browning material seemed to decompose fat peroxide. The addition of α-, γ- and δ-tocopherol into the membrane lipid inhibited the formation of fat peroxide and off-flavor and decreased the browning degree. The addition of the membrane lipid prolonged the induction period of the oxidation of the milk fat obtained by churning. The antioxidant activity of aα-, γ- and δ-tocopherols added into the churned milk fat containing 1% of the membrane lipid was higher than that of the tocopherols added into the churned milk fat containing no membrane lipid.  相似文献   

5.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

6.
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible epsilon-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.  相似文献   

7.
Allatectomy of 1-day-old female desert locusts resulted in an accumulation of lipid in the fat body. This accumulation of lipid was due to the continuation of lipid deposition in the fat body after the period of somatic growth. Somatic growth and feeding activity were unaffected by allatectomy, and so could not be indirect causes of fat body lipid accumulation. Lipid accumulation in allatectomized locusts is more likely to be related directly to a lack of juvenile hormone. Implantation of active corpora allata into 1-day-old adult female locusts resulted in a premature development of oöcytes and a decrease in fat body lipid accumulation; somatic growth was not inhibited. Implantation of active corpora allata into old allatectomized locusts resulted in a decrease in the fat body lipid content and the onset of oöcyte development. The lipid synthetic activity of the fat body, measured by the incorporation of 14C-actate into total fat body lipid, was greatly increased in allatectomized locusts after the period of somatic growth. The protein synthetic activity of the fat body, measured by the incorporation of 3H-leucine into total fat body protein, remained low after the period of somatic growth in allatectomized insects. Juvenile hormone might thus have a dual effect on fat body metabolism, that is suppressing lipid synthesis and stimulating vitellogenic protein synthesis. Increased synthesis of lipid by the fat body would then account for the accumulation of lipid in the fat body after allatectomy. Inhibition of release of lipid from the fat body is unlikely to play a part in the accumulation as allatectomy had no effect on haemolymph lipid concentrations.  相似文献   

8.
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible ε-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.  相似文献   

9.
In order to investigate the roles of the physical states of phospholipid and protein in the enzymatic behavior of the Ca2+ -ATPase from sarcoplasmic reticulum, we have modified the lipid phase of the enzyme, observed the effects on the enzymatic activity at low temperatures, and correlated these effects with spectroscopic measurements of the rotational motions of both the lipid and protein components. Replacement of the native lipids with dipalmitoyl phosphatidylcholine inhibits ATPase activity and decreases both lipid fluidity, as monitored by EPR spectroscopy on a stearic acid spin label, and protein rotational mobility, as monitored by saturation transfer EPR spectroscopy on the covalently spin-labeled enzyme. Solubilization of the lipid-replaced enzyme with Triton X-100 reverses all three of these effects. Ten millimolar CaCl2 added either to the enzyme associated with the endogenous lipids or to the Triton X-100 soulbilized enzyme inhibits both ATPase activity and protein rotational mobility but has no detectable effect on the lipid mobility. These results are consistent with the proposal that both lipid fluidity and protein rotational mobility are essential for enzymatic activity.  相似文献   

10.
V A Kolb  E V Makeyev    A S Spirin 《The EMBO journal》1994,13(15):3631-3637
In vitro synthesis of firefly luciferase and its folding into an enzymatically active conformation were studied in a wheat germ cell-free translation system. A novel method is described by which the enzymatic activity of newly synthesized luciferase can be monitored continuously in the cell-free system while this protein is being translated from its mRNA. It is shown that ribosome-bound polypeptide chains have no detectable enzymatic activity, but that this activity appears within a few seconds after luciferase has been released from the ribosome. In contrast, the renaturation of denatured luciferase under identical conditions occurs with a half-time of 14 min. These results support the cotranslational folding hypothesis which states that the nascent peptides start to attain their native tertiary structure during protein synthesis on the ribosome.  相似文献   

11.
Intrahepatic or intramuscular lipid (IHL/IML) content has been reported to be correlated with insulin resistance. Visceral fat has also been shown to be associated with insulin resistance. Thus, we investigated whether IHL/IML or visceral fat content is more closely associated with insulin resistance. Twenty Sprague-Dawley rats were divided into two groups based on regular chow diet (RCD) or high-fat diet (HFD; 40% fat). The insulin-sensitivity index (ISI) was determined by euglycemic glucose clamp study, the amount of visceral fat by computed tomography (CT), and the IHL/IML content by magnetic resonance spectroscopy (MRS). Weight, food, and water intake, physical activity, energy expenditure, lipid profile, adiponectin, and high-sensitivity C-reactive protein (hsCRP) levels were measured. At the study end point, visceral fat, and the IHL/IML content were higher in the HFD group than in the RCD group. The IHL/IML content was more highly correlated with ISI than was visceral fat amount. Stronger correlations were also found between adiponectin or hsCRP level and IML/IHL content than visceral fat, especially in the HFD group. Furthermore, the IHL/IML content was significantly associated with the ISI in the multiple regression models but visceral fat was not. There was clear discrimination between RCD and HFD groups in scatter plots of IML/IHL against the ISI, but substantial overlap in that of visceral fat against the ISI. This result suggests that IHL/IML contents are closely related with insulin resistance or atherosclerosis and is a better metabolic index of insulin sensitivity than the visceral fat.  相似文献   

12.
The copper-containing plasma protein caeruloplasmin (Cp) has been shown to possess several oxidase activities, but with the exception of its ferrous ion oxidising (ferroxidase) activity which so far appear to be of minor biological relevance. Recently, Kim and colleagues (Kim et al. (1998) FEBS Lett. 431, pp. 473-475) observed that Cp can catalytically remove hydrogen peroxide in the presence of thiols. Here, we show that Cp can remove both hydrogen peroxide and lipid hydroperoxides at physiologically relevant concentrations of reduced glutathione known to be present in lung and lung lining fluid. The glutathione peroxidase-like activity of Cp together with its ferroxidase activity would completely remove the primary reactants required for both Fenton chemistry and lipid peroxidation.  相似文献   

13.
亚东鲑幼鱼饲料蛋白和脂肪适宜水平的研究   总被引:1,自引:0,他引:1  
为考察饲料蛋白和脂肪水平对亚东鲑(Salmo trutta)幼鱼生长性能、体组成、肝脏生化指标和肠道酶活性的影响,实验采用3×2双因子设计,蛋白水平为42%、46%和50%(P42、P46、P50),脂肪水平为12%和16%(L12、L16),共6组饲料,饲养平均体重(2.80±0.10) g的亚东鲑幼鱼56d。结果表明, P46L12组增重率最高(110.34%),饲料系数最低(1.3),而P50L16组的增重率最低;各组在脏体比之间无显著差异(P>0.05);肝体比随着蛋白和脂肪水平的增加呈现降低的趋势;蛋白沉积率和脂肪沉积率随着饲料蛋白的升高先上升后下降。饲料脂肪水平对肠蛋白酶,胃蛋白酶和胃淀粉酶活性均有显著影响(P<0.05),饲料蛋白水平仅对胃蛋白酶活性有显著影响(P<0.05); P46L12组的肠道蛋白酶,胃蛋白酶活性显著高于其他各组(P<0.05),胃、肠淀粉酶活性在各组中也最高。在同一脂肪水平下,肝脏谷丙转氨酶活性和总胆固醇和甘油三酯含量随着饲料粗蛋白水平的增加呈现先上升后下降的趋势。上述结果表明,亚东鲑幼鱼饲料中粗蛋白和粗脂肪的适宜水平分别为...  相似文献   

14.
The present study provides data on the properties of Ca2+-dependent Atpase of sarcoplasmic reticulum in states intermediary between the fully detergent-solubilized and vesicular form. After solubilization of ATPase vesicles by dodecyloctaoxyethylene glycol monoether (C12E8), the protein is mainly present as a monomer exhibiting enzymatic activity. Gel chromatography in presence or absence of Tween 80 gives rise to formation of oligomers of various size and smaller amounts of monomeric ATPase. Only the oligomeric species retain enzymatic activity (half-life, 3 to 4 days), while the gel chromatographic monomer is enzymatically inactive. Teteramers or trimers of ATPase, containing approximately 22 mol of phospholipid/mol of ATPase, are the smallest enzymatically active units after gel chromatography. Formation of larger sized particles and vesicles of ATPase appears to depend on the presence of sufficient lipid to make a cohesion between the tetrameric or trimeric units. The protein appears to be partially deaggregated by a relatively high Tween 80 concentration in the eluant (0.5 mg/ml) and under these conditions, phospholipid binding is reduced to a low level (approximately 11 mol/mol of protein). The data indicate that any bonds between ATPase polypeptide chains are easily disrupted by detergent and that lipid also may play a role in mediating contact between individual polypeptide chains in the tetrameric or trimeric units. Phospholipid analysis and exchange experiments indicate that the phospholipid left on ATPase after solubilization has a similar composition to that of the whole membrane. The binding of Tween 80 by soluble ATPase above the critical micellar concentration is 0.23 to 0.29 g/g of protein. The inactive monomer of ATPase binds phospholipid and Tween 80 to about the same extent, but has a slightly different circular dichroism spectrum, than oligomeric ATPase.  相似文献   

15.
Objective: To evaluate the influence of the pro‐oxidant and proinflammatory state related to dietary obesity on serum paraoxonase 1 (PON1) activity in male and female rats. Methods and Procedures: Adult Wistar rats of both genders were fed on a high‐fat diet to induce weight gain or standard diet for 14 weeks. Body weight was assessed weekly and food intake fortnightly throughout the dietary treatment. Biometrical parameters and serum lipid profile, glucose, insulin, and adipokine levels were measured. To assess the effect of dietary obesity on oxidative stress, levels of liver and serum thiobarbituric acid reactive substances, liver protein carbonyl groups, liver antioxidant enzymes activities, and serum PON1 activities were measured. Results: High‐fat diet feeding induced a significant body weight gain in both male and female rats, as well as a reduction of liver antioxidant protection. High‐fat diet increased serum lipid peroxides in male rats and reduced serum PON1 activities and serum apolipoprotein A‐I (apoA‐I) levels in females, although did not alter serum PON1 or apolipoprotein J (apoJ) levels. Discussion: Our results reveal a gender dimorphism in the high‐fat diet‐induced reduction of serum PON1 activity, which is likely to be related to the greater obese and proinflammatory state achieved in female rats. We suggest that the enhanced oxidative stress caused by dietary increased body weight, on leading to high‐density lipoprotein (HDL), apoA‐I or PON1 oxidation could entail the destabilization of the PON1 association to HDL or a direct inactivation of PON1 enzymatic activity, thus accounting for the decreased serum PON1 activities observed in female rats.  相似文献   

16.
We have investigated the role of lipid and protein dynamics in the activation of the Ca2+-dependent ATPase in sarcoplasmic reticulum (SR) by diethyl ether. Conventional and saturation-transfer electron paramagnetic resonance (EPR) were used to probe rotational motions of spin labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase in SR. We confirm previous studies (Salama, G., and Scarpa, A. (1980) J. Biol. Chem. 255, 6525-6528; Salama, G., and Scarpa, A. (1983) Biochem. Pharmacol. 32, 3465-3477; Kidd, A., Scales, D., and Inesi, G. (1981) Biochem. Biophys. Acta 65, 124-131) reporting that addition of diethyl ether to SR results in an approximately 2-fold enzymatic activation, without loss of coupling. Diethyl ether progressively fluidizes the SR membrane with respect to lipid hydrocarbon chain dynamics probed at several depths in the bilayer. Digital substractions, used to analyze two-component lipid spin label spectra, reveal that a 2-fold mobilization occurs in the population of lipid probes motionally restricted by the protein, while the remaining more mobile population is less affected. The microwave saturation properties of lipid probes also indicate that restricted motions of these probes are mobilized in maximally activated SR membranes. Saturation-transfer EPR, applied to maleimide spin-labeled Ca-ATPase, demonstrates that a 2-fold increase in microsecond rotational motion of the Ca-ATPase correlates with the maximal enzymatic activation. Effects of diethyl ether on both the enzymatic activity and molecular dynamics are completely reversible by dilution with buffer. We propose that ether activates by selectively mobilizing lipid chains adjacent to the enzyme, thus facilitating protein motions that are essential for calcium transport.  相似文献   

17.
Phospholipids (phosphatidylcholines) which contain a diacetylene group in a single acyl chain and within both acyl chains have been synthesized. Upon irradiation with ultraviolet light, both types of lipid crosslink via the diacetylene groups to produce coloured polymers. The colour arises form the conjugated double and triple bonds which make up the polymer backbone. These phospholipid polymers can exhibit optical activity, as shown by their circular dichroic spectra. The optical activity is thought to stem from asymmetric packing of the polydiacetylene chains, a packing of one particular screw sense being favoured by the chiral glycerol moiety of the lipid. The presence of an intrinsic membrane protein within the liposome structure affects the CD spectra of polymer produced by irradiation.  相似文献   

18.
Membrane oxidation may contribute to cataractogenesis. In our pursuit to understand the etiology of cataracts, we assessed the effect of membrane oxidation products on the activity of the lens epithelium calcium pump. Microsome preparations from bovine lens epithelium were oxidized to varying degrees with a ferrous and ferric ascorbate system to generate hydrogen peroxide and superoxide. Ca2+ -ATPase activity was measured using a colorometric assay. Lipid oxidation was quantified by infrared spectroscopy. Ca2+ -ATPase activity decreased as a function of ascorbate concentration between 0 and 200 microM. The level of Ca2+ -ATPase inhibition was correlated to both the level of lipid oxidation and the degree of lipid hydrocarbon chain order. At 25 degrees C when lipids are more ordered, the Ca2+ -ATPase activity was similar to that observed in the oxidized system measured at 37 degrees C. Glutathione, mercaptoethanol, and iodoacetate were able to reverse the oxidative inhibition of the calcium pump, suggesting that the ascorbate/iron oxidant directly oxidized the protein sulfhydryl moieties. To further probe the mechanism of Ca2+ ATPase inhibition, hydrogen peroxide was used to oxidize muscle sarcoplasmic reticulum Ca2+ -ATPase reconstituted in its native lipid vesicles, egg phosphatidylcholine, and dihydrosphingomyelin, with saturated hydrocarbon chains. In these systems, oxidation inhibited the Ca2+ -ATPase pump by 60-80%. There was no statistical difference between the level of oxidative inhibition and the percentage of dihydrosphingomyelin. Because dihydrosphingomyelin cannot be oxidized, whereas egg phosphatidylcholine (PC) can, and because the percentage of inhibition was the same for reconstituted systems using either lipid, the mechanism of inhibition is likely not via a secondary process involving oxidation-induced lipid structural changes or products of lipid oxidation.  相似文献   

19.
This study was designed to investigate the effects of fish oil and vitamin E on the antioxidant defense system in hypercholesterolemic rabbits. A high fat and cholesterol diet, with or without supplement by fish oil and/or a vitamin E supplement, was fed to rabbits for 6 weeks. Compared to the reference diet of regular laboratory rabbit chow, a high fat and cholesterol-enriched diet increased atheroma formation, plasma lipid and peroxide levels, decreased blood glutathione levels, and reduced plasma glutathione reductase, glutathione peroxidase, and catalase activities. Fish oil supplementation significantly reduced atheroma and increased glutathione reductase and glutathione peroxidase activities and blood glutathione levels, but increased plasma lipid peroxide levels. Vitamin E supplementation of the fish oil diet enhanced the beneficial effects by increasing glutathione reductase activity and decreasing peroxide levels. These results indicate that a high fat and cholesterol diet attenuates blood glutathione levels and plasma antioxidant enzyme activities, which may account for some of its atherogenic properties. Consumption of fish oil enhances antioxidative defenses against the oxidative stress imposed by hypercholesterolemia, and vitamin E further enhances these beneficial effects.  相似文献   

20.
The Ca2+-activated ATPase from sarcoplasmic reticulum (ATP phosphohydralase, EC 3.6.1.3) has been incorporated into dipalmitoylphosphatidylcholine vesicles. Using laser flash photolysis, the motion of the intrinsic protein Ca2+—ATPase has been studied with a covalently attached eosin probe. The lipid phase was characterized by wide-angle X-ray diffraction whilst the function of the Ca2+—ATPase was determined from its enzymatic activity.The Arrhenius plot for both protein rotational motion and enzymatic activity shows a distinct break at around 28 to 30 °C. Below this temperature no protein rotational motion can be measured, whereas above this temperature the rotational motion parameter increases with an activation energy of about 16 kcal/mol.An X-ray diffraction study with the recombinant shows that, provided the lipid: protein molar ratio is higher than about 50:1, a portion of lipid, which is crystalline and produces a 4.2 Å spacing, starts to melt at temperatures about 28 to 30 °C. This result correlates with the beginning of rotation and a marked increase of enzyme activity of the Ca2+—ATPase and also with freeze-fracture electron microscopy results, which show that on cooling to below 25 °C the proteins aggregate into patches of high protein content leaving remaining areas of pure lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号