首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Era is a highly conserved GTPase essential for bacterial growth. The N-terminal part of Era contains a conserved GTPase domain, whereas the C-terminal part of the protein contains an RNA- and membrane-binding domain, the KH domain. To investigate whether the binding of Era to 16S rRNA and membrane requires its GTPase activity and whether the GTPase domain is essential for these activities, the N- and C-terminal parts of the Streptococcus pneumoniae Era - Era-N (amino acids 1-185) and Era-C (amino acids 141-299), respectively - were expressed and purified. Era-C, which had completely lost GTPase activity, bound to the cytoplasmic membrane and 16S rRNA. In contrast, Era-N, which retained GTPase activity, failed to bind to RNA or membrane. These results therefore indicate that the binding of Era to RNA and membrane does not require the GTPase activity of the protein and that the RNA-binding domain is an independent, functional domain. The physiological effects of the overexpression of Era-C were assessed. The Escherichia coli cells overexpressing Era and Era-N exhibited the same growth rate as wild-type E. coli cells. In contrast, the E. coli cells overexpressing Era-C exhibited a reduced growth rate, indicating that the overexpression of Era-C inhibits cell growth. Furthermore, overexpression of era-N and era-C resulted in morphological changes. Finally, purified Era and Era-C were able to bind to poly(U) RNA, and the binding of Era to poly(U) RNA was significantly inhibited by liposome, as the amount of Era bound to the RNA decreased proportionally with the increase of liposome in the assay. Therefore, this study provides the first biochemical evidence that both binding sites are overlapping. Together, these results indicate that the RNA- and membrane-binding domain of Era is a separate, functional entity and does not require the GTPase activity or the GTPase domain of the protein for activity.  相似文献   

2.
Era, an essential GTPase, plays a regulatory role in several cellular processes. The Era protein of Streptococcus pneumoniae has recently been shown to bind to 16S rRNA and the cytoplasmic membrane. However, exact locations of Era responsible for RNA- and membrane-binding were unknown. To identify the regions in Era that interact with the RNA and membrane, the C-terminal part of S. pneumoniae Era was systematically deleted while the N-terminal part, responsible for the GTPase activity of the protein, was kept intact. The resulting truncated Era proteins were purified and characterized. The C-terminal deletion of 9 or 19 amino-acid residues did not affect 16S rRNA-binding activity while further deletions of the C-terminus (29-114 amino-acid residues) abolished the activity. These results indicate that the integrity of the putative KH domain of Era, spanning the amino-acid residues between approximately 22-83 from the C-terminus, is required for 16S rRNA-binding. Furthermore, the Era proteins with a deletion up to 45 residues from the C-terminus retained membrane-binding activity, but longer deletions significantly reduced the activity. These results indicate that part of the putative KH domain is also required for membrane-binding. Thus, these results indicate for the first time that the regions critical for the membrane- and 16S rRNA-binding activities of Era overlap. The era gene with a deletion of 9 or 19 codons from its 3' terminus complemented an Escherichia coli mutant strain deficient in Era production whereas the genes with longer deletions failed to do so, thereby indicating that the KH domain is essential for Era function. Taken together, the results of this study indicate that the putative KH domain is required for 16S rRNA-binding activity and that part of the KH domain is also required for membrane-binding activity. The results also suggest that the interaction between Era and 16S rRNA is essential for bacterial growth.  相似文献   

3.
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.  相似文献   

4.
Recent studies have demonstrated that bacteria possess an essential protein translocation system similar to mammalian signal recognition particle (SRP). Here we have identified the Ffh, a homologue of the mammalian SRP54 subunit from S. pneumoniae. Ffh is a 58-kDa protein with three distinct domains: an N-terminal hydrophilic domain (N-domain), a G-domain containing GTP/GDP binding motifs, and a C-terminal methionine-rich domain (M-domain). The full-length Ffh and a truncated protein containing N and G domains (Ffh-NG) were overexpressed in E. coli and purified to homogeneity. The full-length Ffh has an intrinsic GTPase activity with k(cat) of 0.144 min(-1), and the K(m) for GTP is 10.9 microM. It is able to bind to 4.5S RNA specifically as demonstrated by gel retardation assay. The truncated Ffh-NG has approximately the same intrinsic GTPase activity to the full-length Ffh, but is unable to bind to 4.5S RNA, indicating that the NG domain is sufficient for supporting intrinsic GTP hydrolysis, and that the M domain is required for RNA binding. The interaction of S. pneumoniae Ffh with its receptor, FtsY, resulted in a 20-fold stimulation in GTP hydrolysis. The stimulation was further demonstrated to be independent of the 4.5S RNA. In addition, a similar GTPase stimulation is also observed between Ffh-NG and FtsY, suggesting that the NG domain is sufficient and the M domain is not required for GTPase stimulation between Ffh and FtsY.  相似文献   

5.
Era is an essential G-protein in Escherichia coli identified originally as a homologue protein to Ras (E. coli Ras-like protein). It binds to GTP/GDP and contains a low intrinsic GTPase activity. Its function remains elusive, although it has been suggested that Era is associated with the cytoplasmic membrane, cell division, energy metabolism, and cell-cycle check point. Recently, a cold-sensitive phenotype was found to be suppressed by the overexpression of 16S rRNA methyltransferase, suggesting Era association with the ribosome. Here we demonstrate that Era specifically binds to 16S rRNA and the 30S ribosomal subunit. Both GTP and GDP, but not GMP, inhibit Era binding to ribosomal component. Involvement of Era in protein synthesis is suggested by the fact that Era depletion results in the translation defect both in vitro and in vivo.  相似文献   

6.
Era是细菌生长必须的一高度保守的GTPase。yggG是从大肠杆菌全基因组文库中钓取并克隆的Era结合蛋白基因,进一步的研究表明该基因在大肠杆菌中的表达与环境应激相关,提示yggG基因产物参与细菌的应激调控。为了阐明YggG蛋白与Era蛋白间的相互关系,利用所构建的双启动子表达载体pDH2-YggG-Ptac-Era在同一细胞中同时表达YggG与Era蛋白,并通过免疫共沉淀实验检测细菌裂解产物YggG与Era蛋白间的相互作用;在此基础上,构建并表达纯化了GST融合的Era蛋白氨基端截短肽和Era羧基端截短肽,通过GST Pull-down检测了Era不同功能区域与YggG蛋白间的相互作用。结果显示, Era/YggG 复合物仅存在于同时过表达Era和YggG蛋白的细菌细胞内,不诱导Era或者不诱导YggG蛋白过表达,均检测不到Era/YggG 复合物存在;纯化的GST不能Pull-down YggG蛋白,而纯化的GST融合的Era蛋白、Era氨基端截短肽及Era羧基端截短肽均可以Pull-down YggG蛋白;GST融合Era氨基端截短肽和GST融合的Era蛋白对YggG蛋白结合作用明显高于GST融合的Era蛋白羧基端截短肽。上述结果说明,YggG是一大肠杆菌Era结合蛋白,YggG与Era的氨基端和羧基端的结合活性存在差异。  相似文献   

7.
We report the purification and characterization of a protein from the membrane fraction of Pseudomonas aeruginosa showing intrinsic guanosine triphosphatase (GTPase) activity. The protein was purified as a 48-kDa polypeptide capable of binding and hydrolyzing GTP. The N-terminal sequence of the purified protein revealed its similarity to the Escherichia coli Ras-like protein (Era), and the protein cross-reacted with anti-Era antibodies. This protein was named Pseudomonas Ras-like protein (Pra). Anti-Pra antibodies also cross-reacted with E. coli Era protein. Pra is autophosphorylated in vitro, with phosphotransfer of the terminal phosphate from [gamma-32P]GTP but not [gamma-32P]ATP. Pra is capable of complex formation with the truncated 12-kDa form of nucleoside diphosphate kinase (Ndk) but not with the 16-kDa form. Purified Pra was also shown to physically interact with pyruvate kinase (Pk); Pk and Pra can form a complex, but when the 12-kDa Ndk, Pk, and Pra are all present, Pk has a higher affinity than Pra for forming a complex with the 12-kDa Ndk. The 12-kDa Ndk-Pra complex catalyzed increased synthesis of GTP and dGTP and diminished synthesis of CTP and UTP or dCTP and dTTP relative to their synthesis by uncomplexed Ndk. Moreover, the complex of Pra with Pk resulted in the specific synthesis of GTP as well when Pra was present in concentrations in excess of that of Pk. Membrane fractions from cells harvested in the mid-log phase demonstrated very little nucleoside triphosphate (NTP)-synthesizing activity and no detectable Ndk. Membranes from cells harvested at late exponential phase showed NTP-synthesizing activity and the physical presence of Ndk but not of Pk or Pra. In contrast, membrane fractions of cells harvested at early to late stationary phase showed predominant GTP synthesis and the presence of increasing amounts of Pk and Pra. It is likely that the association of Pra with Ndk and/or Pk restricts its intrinsic GTPase activity, which may modulate stationary-phase gene expression and the survival of P. aeruginosa by modulating the level of GTP.  相似文献   

8.
Bacterial genome sequencing has revealed a novel family of P-loop GTPases that are often essential for growth. Accumulating evidence suggests that these proteins are involved in biogenesis of the 30S or 50S ribosomal subunits. YqeH is a member of this Obg/Era GTPase family, with its function remains to be uncovered. Here, we present results showing that YqeH is involved in the 30S subunit biogenesis in Bacillus subtilis. We observed a reduction in the 70S ribosome and accumulation of the free 50S subunit in YqeH-depleted cells. Interestingly, no free 30S subunit accumulation was evident. Consistent with the theory that YqeH is involved in 30S subunit biogenesis, a precursor of 16S rRNA and its degradation products were detected. Additionally, the reduction of free 30S subunit was not observed in Era-depleted cells. YqeH overexpression did not compensate for growth defects in mutants devoid of Era and vice versa. Moreover, in vitro GTPase analyses showed that YqeH possessed high intrinsic GTPase activity. In contrast, Era showed slow GTPase activity, which was enhanced by the 30S ribosomal subunit. Our findings strongly suggest that YqeH and Era function at distinct checkpoints during 30S subunit assembly. B. subtilis yqeH is classified as an essential gene due to the inability of the IPTG-dependent P(spac)-yqeH mutant to grow on LB or PAB agar plates in the absence of IPTG. However, in our experiments, the P(spac)-yqeH mutant grew in PAB liquid medium without IPTG supplementation, albeit at an impaired rate. This finding raises the interesting possibility that YqeH participates in assembly of the 30S ribosomal subunit as well as other cellular functions essential for growth on solid media.  相似文献   

9.
A substitution mutation of Pro17 by Val (P17V) was constructed in the guanine nucleotide binding domain of Era, an essential protein in Escherichia coli. The mutation is analogous to the oncogenic activating allele at position 12 in the GTP-binding domain of p21ras. The phenotype of this mutant was analysed in a strain which exclusively expressed the mutant protein (Era-V17) in null allele chromosomal background (era1: :kan). The strain was found to be cold-sensitive for growth. Mutant Era-V17 purified from the strain was cold-sensitive for GTP-hydrolytic activity, suggesting that the GTPase activity of Era is required for cell growth since the P17V mutation resulted in both cold-sensitive growth of cells and cold-labile GTPase activity of the purified protein.  相似文献   

10.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

11.
Bacillus subtilis YlqF belongs to the Era/Obg subfamily of small GTP-binding proteins and is essential for bacterial growth. Here we report that YlqF participates in the late step of 50 S ribosomal subunit assembly. YlqF was co-fractionated with the 50 S subunit, depending on the presence of noncleavable GTP analog. Moreover, the GTPase activity of YlqF was stimulated specifically by the 50 S subunit in vitro. Dimethyl sulfate footprinting analysis disclosed that YlqF binds to a unique position in 23 S rRNA. Yeast two-hybrid data revealed interactions between YlqF and the B. subtilis L25 protein (Ctc). The interaction was confirmed by the pull-down assay of the purified proteins. Specifically, YlqF is positioned around the A-site and P-site on the 50 S subunit. Proteome analysis of the abnormal 50 S subunits that accumulated in YlqF-depleted cells showed that L16 and L27 proteins, located near the YlqF-binding domain, are missing. Our results collectively indicate that YlqF will organize the late step of 50 S ribosomal subunit assembly.  相似文献   

12.
13.
The 60-kDa Ro autoantigen is normally complexed with small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the Ro protein is also complexed with a large class of variant 5S rRNA precursors that are folded incorrectly. Using purified baculovirus-expressed protein, we show that the 60-kDa Ro protein binds directly to both Y RNAs and misfolded 5S rRNA precursors. To understand how the protein recognizes these two distinct classes of RNAs, we investigated the features of Y RNA sequence and structure that are necessary for protein recognition. We identified a truncated Y RNA that is stably bound by the 60-kDa Ro protein. Within this 39-nt RNA is a conserved helix that is proposed to be the binding site for the Ro protein. Mutagenesis of this minimal Y RNA revealed that binding by the 60-kDa Ro protein requires specific base pairs within the conserved helix, a singly bulged nucleotide that disrupts the helix, and a three-nucleotide bulge on the opposing strand. Chemical probing experiments using diethyl pyrocarbonate demonstrated that, in the presence of the two bulges, the major groove of the conserved helix is accessible to protein side chains. These data are consistent with a model in which the Ro protein recognizes specific base pairs in the conserved helix by binding in the major groove of the RNA. Furthermore, experiments in which dimethyl sulfate was used to probe a naked and protein-bound Y RNA revealed that a structural alteration occurs in the RNA upon Ro protein binding.  相似文献   

14.
Previous work suggested that the release of the nucleolar Tif6 from nascent 60 S subunits occurs in the cytoplasm and requires the cytoplasmic EF-2-like GTPase, Efl1. To check whether this release involves an rRNA structural rearrangement mediated by Efl1, we analyzed the rRNA conformation of the GTPase center of 80 S ribosomes in three contexts: wild-type, Deltaefl1 and a dominant suppressor R1 of Deltaefl1. This analysis was restricted to domain II and VI of 25 S rRNA. The rRNA analysis of R1 ribosomes allows us to distinguish the effects due to depletion of Efl1 from the resulting nucleolar deficit of Tif6. Efl1 inhibits the EF-2 GTPase activity, suggesting that the two proteins share a similar ribosome-binding site. The 80 S ribosomes from either type failed to show any difference of conformation in the two rRNA domains analyzed. However, the same analysis performed on the pool of free 60 S subunits reveals several rRNA conformational differences between wild-type and Deltaefl1 subunits, whereas that from the suppressor strain is similar to wild-type. This suggests that the nucleolar deficit of Tif6 during assembly of the 60 S preribosomes is responsible for the changes in rRNA conformation observed in Deltaefl1 60 S subunits. We also purified 60 S preribosomes from the three genetic contexts by TAP-tagging Tif6. The protein content of 60 S preribosomes associated with Tif6p in a Deltaefl1 strain are obtained at a lower yield but have, surprisingly, a protein composition that is a priori similar to that of wild-type and the suppressor strain.  相似文献   

15.
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.  相似文献   

16.
A cold-shock protein, RbfA (ribosome-binding factor A), is essential for cell growth at low temperature. In an rbfA-deletion strain, 30S and 50S ribosomal subunits increase relative to 70S monosomes with concomitant accumulation of a precursor 16S rRNA (17S rRNA). Recently, we have reported that overexpression of Era, an essential GTP-binding protein, suppresses not only the cold-sensitive cell growth but also defective ribosome biogenesis in the rbfA-deletion strain. Here, in order to elucidate how RbfA and Era functionally overlap, we characterized a cold-sensitive Era mutant (a point mutation at the Glu-200 to Lys; E200K) which shows a similar phenotype as the rbfA-deletion strain; accumulation of free ribosome subunits and 17S rRNA. To examine the effect of E200K in the rbfA-deletion strain, we constructed an E200K-inducible expression system. Interestingly, unlike wild-type Era, overexpression of Era(E200K) protein in the rbfA-deletion strain severely inhibited cell growth even at permissive temperature with further concomitant reduction of 16S rRNA. Purified Era(E200K) protein binds to 30S ribosomal subunits in a nucleotide-dependent manner like wild-type Era and retains both GTPase and autophosphorylation activities. Furthermore, we isolated spontaneous revertants of the E200K mutant. These revertants partially suppressed the accumulation of 17S rRNA. All the spontaneous mutations were found to result in higher Era(E200K) expression. These results suggest that the Era(E200K) protein has an impaired function in ribosome biogenesis without losing its ribosome binding activity. The severe growth defect caused by E200K in the rbfA-deletion strain may be due to competition between intrinsic wild-type Era and overexpressed Era(E200K) for binding to 30S ribosomal subunits. We propose that Era and RbfA have an overlapping function that is essential for ribosome biogenesis, and that RbfA becomes dispensable only at high temperatures because Era can complement its function only at higher temperatures.  相似文献   

17.
The Escherichia coli RrmJ (FtsJ) heat shock protein functions as an rRNA methyltransferase that modifies position U2552 of 23S rRNA in intact 50S ribosomal subunits. An in-frame deletion of the rrmJ (ftsJ) gene leads to severe growth disadvantages under all temperatures tested and causes significant accumulation of ribosomal subunits at the expense of functional 70S ribosomes. To investigate whether overexpression of other E. coli genes can restore the severe growth defect observed in rrmJ null mutants, we constructed an overexpression library from the rrmJ deletion strain and cloned and identified the E. coli genes that were capable of rescuing the rrmJ mutant phenotype. Our intention was to identify other methylases whose specificities overlapped enough with that of RrmJ to allow complementation when overexpressed. To our great surprise, no methylases were found by this method; rather, two small GTPases, Obg (YhbZ) and EngA, when overexpressed in the rrmJ deletion strains, were found to restore the otherwise severely impaired ribosome assembly process and/or stability of 70S ribosomes. 50S ribosomal subunits prepared from these overexpressing strains were shown to still serve as in vitro substrates for purified RrmJ, indicating that the 23S rRNA likely was still lacking the highly conserved Um2552 modification. The apparent lack of this modification, however, no longer caused ribosome defects or a growth disadvantage. Massive overexpression of another related small GTPase, Era, failed to rescue the growth defects of an rrmJ strain. These findings suggest a hitherto unexpected connection between rRNA methylation and GTPase function, specifically that of the two small GTPases Obg and EngA.  相似文献   

18.
The GTPase activity of plasma membranes isolated from rat livers was stimulated 20% over basal by vasopressin. A concentration dependency curve showed that maximal stimulation was obtained with 10(-8) M vasopressin. The vasopressin-stimulated GTPase activity was not inhibited in plasma membranes that had been ADP-ribosylated with either cholera toxin or pertussis toxin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized after preincubation with [3H]vasopressin were subjected to sucrose gradient centrifugation, the majority of protein-bound [3H]vasopressin migrated as a single band with a sedimentation constant of 16.8 S. Moreover, there was a GTPase activity that migrated with the bound [3H]vasopressin. This peak of bound [3H]vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10 microM guanosine 5'-O-(thiotriphosphate). When the 16.8 S peak of bound [3H]vasopressin was further purified over a wheat germ lectin-Sepharose column, a GTPase activity co-eluted from the column with the protein-bound [3H]vasopressin. Direct evidence that a GTP-binding protein was present in the 16.8 S peak was obtained by the immunodetection of a 35-kDa beta subunit of a GTP-binding protein. These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.  相似文献   

19.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

20.
A 28-kDa glutathione S-transferase (Cs28GST) was purified from a Clonorchis sinensis cytosolic fraction through anion-exchange and glutathione-affinity column chromatographies. A monoclonal antibody raised against Cs28GST reacted specifically to the C. sinensis antigen among trematode proteins. A putative peptide of 212 amino residues deduced from a cDNA clone appeared homologous with 28-kDa GST of trematodes, and its secondary structural elements predicted a GSH-binding site. Recombinant Cs28GST showed GST enzyme activity with CDNB substrate and was sensitive to the model inhibitors. The recombinant Cs28GST was antigenically indistinguishable from the native form and was recognized specifically by C. sinensis-infected human sera. The Cs28GST was localized in the tegument and underlying mesenchymal tissues. It is suggested that Cs28GST may play significant physiological roles against bioreactive molecules and be a useful reagent for serodiagnosis of clonorchiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号